Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tglineelsb2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineelsb2.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineelsb2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglineelsb2.1 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
tglineelsb2.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
7 |
|
tglineelsb2.4 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝐺 ∈ TarskiG ) |
9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑄 ∈ 𝐵 ) |
10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑃 ∈ 𝐵 ) |
11 |
1 3 2 4 5 6 7
|
tglnssp |
⊢ ( 𝜑 → ( 𝑃 𝐿 𝑄 ) ⊆ 𝐵 ) |
12 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑥 ∈ 𝐵 ) |
13 |
7
|
necomd |
⊢ ( 𝜑 → 𝑄 ≠ 𝑃 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑄 ≠ 𝑃 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) |
16 |
1 2 3 8 9 10 12 14 15
|
lncom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) → 𝐺 ∈ TarskiG ) |
18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) → 𝑃 ∈ 𝐵 ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) → 𝑄 ∈ 𝐵 ) |
20 |
1 3 2 4 6 5 13
|
tglnssp |
⊢ ( 𝜑 → ( 𝑄 𝐿 𝑃 ) ⊆ 𝐵 ) |
21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) → 𝑥 ∈ 𝐵 ) |
22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) → 𝑃 ≠ 𝑄 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) → 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) |
24 |
1 2 3 17 18 19 21 22 23
|
lncom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) → 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) |
25 |
16 24
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ↔ 𝑥 ∈ ( 𝑄 𝐿 𝑃 ) ) ) |
26 |
25
|
eqrdv |
⊢ ( 𝜑 → ( 𝑃 𝐿 𝑄 ) = ( 𝑄 𝐿 𝑃 ) ) |