| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
| 2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
| 3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
| 4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tglineelsb2.1 |
|- ( ph -> P e. B ) |
| 6 |
|
tglineelsb2.2 |
|- ( ph -> Q e. B ) |
| 7 |
|
tglineelsb2.4 |
|- ( ph -> P =/= Q ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> G e. TarskiG ) |
| 9 |
6
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> Q e. B ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> P e. B ) |
| 11 |
1 3 2 4 5 6 7
|
tglnssp |
|- ( ph -> ( P L Q ) C_ B ) |
| 12 |
11
|
sselda |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. B ) |
| 13 |
7
|
necomd |
|- ( ph -> Q =/= P ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ x e. ( P L Q ) ) -> Q =/= P ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. ( P L Q ) ) |
| 16 |
1 2 3 8 9 10 12 14 15
|
lncom |
|- ( ( ph /\ x e. ( P L Q ) ) -> x e. ( Q L P ) ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> G e. TarskiG ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> P e. B ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> Q e. B ) |
| 20 |
1 3 2 4 6 5 13
|
tglnssp |
|- ( ph -> ( Q L P ) C_ B ) |
| 21 |
20
|
sselda |
|- ( ( ph /\ x e. ( Q L P ) ) -> x e. B ) |
| 22 |
7
|
adantr |
|- ( ( ph /\ x e. ( Q L P ) ) -> P =/= Q ) |
| 23 |
|
simpr |
|- ( ( ph /\ x e. ( Q L P ) ) -> x e. ( Q L P ) ) |
| 24 |
1 2 3 17 18 19 21 22 23
|
lncom |
|- ( ( ph /\ x e. ( Q L P ) ) -> x e. ( P L Q ) ) |
| 25 |
16 24
|
impbida |
|- ( ph -> ( x e. ( P L Q ) <-> x e. ( Q L P ) ) ) |
| 26 |
25
|
eqrdv |
|- ( ph -> ( P L Q ) = ( Q L P ) ) |