Step |
Hyp |
Ref |
Expression |
1 |
|
tglineintmo.p |
|- P = ( Base ` G ) |
2 |
|
tglineintmo.i |
|- I = ( Itv ` G ) |
3 |
|
tglineintmo.l |
|- L = ( LineG ` G ) |
4 |
|
tglineintmo.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
coltr.a |
|- ( ph -> A e. P ) |
6 |
|
coltr.b |
|- ( ph -> B e. P ) |
7 |
|
coltr.c |
|- ( ph -> C e. P ) |
8 |
|
coltr.d |
|- ( ph -> D e. P ) |
9 |
|
coltr.1 |
|- ( ph -> A e. ( B L C ) ) |
10 |
|
coltr3.2 |
|- ( ph -> D e. ( A I C ) ) |
11 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
12 |
4
|
adantr |
|- ( ( ph /\ A = C ) -> G e. TarskiG ) |
13 |
5
|
adantr |
|- ( ( ph /\ A = C ) -> A e. P ) |
14 |
8
|
adantr |
|- ( ( ph /\ A = C ) -> D e. P ) |
15 |
10
|
adantr |
|- ( ( ph /\ A = C ) -> D e. ( A I C ) ) |
16 |
|
simpr |
|- ( ( ph /\ A = C ) -> A = C ) |
17 |
16
|
oveq2d |
|- ( ( ph /\ A = C ) -> ( A I A ) = ( A I C ) ) |
18 |
15 17
|
eleqtrrd |
|- ( ( ph /\ A = C ) -> D e. ( A I A ) ) |
19 |
1 11 2 12 13 14 18
|
axtgbtwnid |
|- ( ( ph /\ A = C ) -> A = D ) |
20 |
9
|
adantr |
|- ( ( ph /\ A = C ) -> A e. ( B L C ) ) |
21 |
19 20
|
eqeltrrd |
|- ( ( ph /\ A = C ) -> D e. ( B L C ) ) |
22 |
4
|
adantr |
|- ( ( ph /\ A =/= C ) -> G e. TarskiG ) |
23 |
5
|
adantr |
|- ( ( ph /\ A =/= C ) -> A e. P ) |
24 |
7
|
adantr |
|- ( ( ph /\ A =/= C ) -> C e. P ) |
25 |
8
|
adantr |
|- ( ( ph /\ A =/= C ) -> D e. P ) |
26 |
|
simpr |
|- ( ( ph /\ A =/= C ) -> A =/= C ) |
27 |
10
|
adantr |
|- ( ( ph /\ A =/= C ) -> D e. ( A I C ) ) |
28 |
1 2 3 22 23 24 25 26 27
|
btwnlng1 |
|- ( ( ph /\ A =/= C ) -> D e. ( A L C ) ) |
29 |
26
|
necomd |
|- ( ( ph /\ A =/= C ) -> C =/= A ) |
30 |
6
|
adantr |
|- ( ( ph /\ A =/= C ) -> B e. P ) |
31 |
1 3 2 4 6 7 9
|
tglngne |
|- ( ph -> B =/= C ) |
32 |
31
|
adantr |
|- ( ( ph /\ A =/= C ) -> B =/= C ) |
33 |
9
|
adantr |
|- ( ( ph /\ A =/= C ) -> A e. ( B L C ) ) |
34 |
1 2 3 22 24 23 30 29 33 32
|
lnrot1 |
|- ( ( ph /\ A =/= C ) -> B e. ( C L A ) ) |
35 |
1 2 3 22 24 23 29 30 32 34
|
tglineelsb2 |
|- ( ( ph /\ A =/= C ) -> ( C L A ) = ( C L B ) ) |
36 |
1 2 3 22 23 24 26
|
tglinecom |
|- ( ( ph /\ A =/= C ) -> ( A L C ) = ( C L A ) ) |
37 |
1 2 3 4 6 7 31
|
tglinecom |
|- ( ph -> ( B L C ) = ( C L B ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ A =/= C ) -> ( B L C ) = ( C L B ) ) |
39 |
35 36 38
|
3eqtr4d |
|- ( ( ph /\ A =/= C ) -> ( A L C ) = ( B L C ) ) |
40 |
28 39
|
eleqtrd |
|- ( ( ph /\ A =/= C ) -> D e. ( B L C ) ) |
41 |
21 40
|
pm2.61dane |
|- ( ph -> D e. ( B L C ) ) |