| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineintmo.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tglineintmo.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | tglineintmo.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | tglineintmo.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | colline.1 |  |-  ( ph -> X e. P ) | 
						
							| 6 |  | colline.2 |  |-  ( ph -> Y e. P ) | 
						
							| 7 |  | colline.3 |  |-  ( ph -> Z e. P ) | 
						
							| 8 |  | colline.4 |  |-  ( ph -> 2 <_ ( # ` P ) ) | 
						
							| 9 | 4 | ad4antr |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> G e. TarskiG ) | 
						
							| 10 | 5 | ad4antr |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X e. P ) | 
						
							| 11 |  | simplr |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> x e. P ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X =/= x ) | 
						
							| 13 | 1 2 3 9 10 11 12 | tgelrnln |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> ( X L x ) e. ran L ) | 
						
							| 14 | 1 2 3 9 10 11 12 | tglinerflx1 |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X e. ( X L x ) ) | 
						
							| 15 |  | simp-4r |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> Y = Z ) | 
						
							| 16 |  | simpllr |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> X = Z ) | 
						
							| 17 | 16 14 | eqeltrrd |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> Z e. ( X L x ) ) | 
						
							| 18 | 15 17 | eqeltrd |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> Y e. ( X L x ) ) | 
						
							| 19 |  | eleq2 |  |-  ( a = ( X L x ) -> ( X e. a <-> X e. ( X L x ) ) ) | 
						
							| 20 |  | eleq2 |  |-  ( a = ( X L x ) -> ( Y e. a <-> Y e. ( X L x ) ) ) | 
						
							| 21 |  | eleq2 |  |-  ( a = ( X L x ) -> ( Z e. a <-> Z e. ( X L x ) ) ) | 
						
							| 22 | 19 20 21 | 3anbi123d |  |-  ( a = ( X L x ) -> ( ( X e. a /\ Y e. a /\ Z e. a ) <-> ( X e. ( X L x ) /\ Y e. ( X L x ) /\ Z e. ( X L x ) ) ) ) | 
						
							| 23 | 22 | rspcev |  |-  ( ( ( X L x ) e. ran L /\ ( X e. ( X L x ) /\ Y e. ( X L x ) /\ Z e. ( X L x ) ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 24 | 13 14 18 17 23 | syl13anc |  |-  ( ( ( ( ( ph /\ Y = Z ) /\ X = Z ) /\ x e. P ) /\ X =/= x ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 25 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 26 | 1 25 2 4 8 5 | tglowdim1i |  |-  ( ph -> E. x e. P X =/= x ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( ph /\ Y = Z ) /\ X = Z ) -> E. x e. P X =/= x ) | 
						
							| 28 | 24 27 | r19.29a |  |-  ( ( ( ph /\ Y = Z ) /\ X = Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 29 | 4 | ad2antrr |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> G e. TarskiG ) | 
						
							| 30 | 5 | ad2antrr |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> X e. P ) | 
						
							| 31 | 7 | ad2antrr |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Z e. P ) | 
						
							| 32 |  | simpr |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> X =/= Z ) | 
						
							| 33 | 1 2 3 29 30 31 32 | tgelrnln |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> ( X L Z ) e. ran L ) | 
						
							| 34 | 1 2 3 29 30 31 32 | tglinerflx1 |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> X e. ( X L Z ) ) | 
						
							| 35 |  | simplr |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Y = Z ) | 
						
							| 36 | 1 2 3 29 30 31 32 | tglinerflx2 |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Z e. ( X L Z ) ) | 
						
							| 37 | 35 36 | eqeltrd |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> Y e. ( X L Z ) ) | 
						
							| 38 |  | eleq2 |  |-  ( a = ( X L Z ) -> ( X e. a <-> X e. ( X L Z ) ) ) | 
						
							| 39 |  | eleq2 |  |-  ( a = ( X L Z ) -> ( Y e. a <-> Y e. ( X L Z ) ) ) | 
						
							| 40 |  | eleq2 |  |-  ( a = ( X L Z ) -> ( Z e. a <-> Z e. ( X L Z ) ) ) | 
						
							| 41 | 38 39 40 | 3anbi123d |  |-  ( a = ( X L Z ) -> ( ( X e. a /\ Y e. a /\ Z e. a ) <-> ( X e. ( X L Z ) /\ Y e. ( X L Z ) /\ Z e. ( X L Z ) ) ) ) | 
						
							| 42 | 41 | rspcev |  |-  ( ( ( X L Z ) e. ran L /\ ( X e. ( X L Z ) /\ Y e. ( X L Z ) /\ Z e. ( X L Z ) ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 43 | 33 34 37 36 42 | syl13anc |  |-  ( ( ( ph /\ Y = Z ) /\ X =/= Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 44 | 28 43 | pm2.61dane |  |-  ( ( ph /\ Y = Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 45 | 44 | adantlr |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y = Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 46 |  | simpll |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> ph ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> Y =/= Z ) | 
						
							| 48 | 47 | neneqd |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> -. Y = Z ) | 
						
							| 49 |  | simplr |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> ( X e. ( Y L Z ) \/ Y = Z ) ) | 
						
							| 50 |  | orel2 |  |-  ( -. Y = Z -> ( ( X e. ( Y L Z ) \/ Y = Z ) -> X e. ( Y L Z ) ) ) | 
						
							| 51 | 48 49 50 | sylc |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> X e. ( Y L Z ) ) | 
						
							| 52 | 4 | ad2antrr |  |-  ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> G e. TarskiG ) | 
						
							| 53 | 6 | ad2antrr |  |-  ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Y e. P ) | 
						
							| 54 | 7 | ad2antrr |  |-  ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Z e. P ) | 
						
							| 55 |  | simpr |  |-  ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Y =/= Z ) | 
						
							| 56 | 1 2 3 52 53 54 55 | tgelrnln |  |-  ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> ( Y L Z ) e. ran L ) | 
						
							| 57 | 46 51 47 56 | syl21anc |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> ( Y L Z ) e. ran L ) | 
						
							| 58 | 1 2 3 52 53 54 55 | tglinerflx1 |  |-  ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Y e. ( Y L Z ) ) | 
						
							| 59 | 46 51 47 58 | syl21anc |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> Y e. ( Y L Z ) ) | 
						
							| 60 | 1 2 3 52 53 54 55 | tglinerflx2 |  |-  ( ( ( ph /\ X e. ( Y L Z ) ) /\ Y =/= Z ) -> Z e. ( Y L Z ) ) | 
						
							| 61 | 46 51 47 60 | syl21anc |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> Z e. ( Y L Z ) ) | 
						
							| 62 |  | eleq2 |  |-  ( a = ( Y L Z ) -> ( X e. a <-> X e. ( Y L Z ) ) ) | 
						
							| 63 |  | eleq2 |  |-  ( a = ( Y L Z ) -> ( Y e. a <-> Y e. ( Y L Z ) ) ) | 
						
							| 64 |  | eleq2 |  |-  ( a = ( Y L Z ) -> ( Z e. a <-> Z e. ( Y L Z ) ) ) | 
						
							| 65 | 62 63 64 | 3anbi123d |  |-  ( a = ( Y L Z ) -> ( ( X e. a /\ Y e. a /\ Z e. a ) <-> ( X e. ( Y L Z ) /\ Y e. ( Y L Z ) /\ Z e. ( Y L Z ) ) ) ) | 
						
							| 66 | 65 | rspcev |  |-  ( ( ( Y L Z ) e. ran L /\ ( X e. ( Y L Z ) /\ Y e. ( Y L Z ) /\ Z e. ( Y L Z ) ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 67 | 57 51 59 61 66 | syl13anc |  |-  ( ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) /\ Y =/= Z ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 68 | 45 67 | pm2.61dane |  |-  ( ( ph /\ ( X e. ( Y L Z ) \/ Y = Z ) ) -> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) | 
						
							| 69 |  | df-ne |  |-  ( Y =/= Z <-> -. Y = Z ) | 
						
							| 70 |  | simplr1 |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> X e. a ) | 
						
							| 71 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> G e. TarskiG ) | 
						
							| 72 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Y e. P ) | 
						
							| 73 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Z e. P ) | 
						
							| 74 |  | simpr |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Y =/= Z ) | 
						
							| 75 |  | simpllr |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> a e. ran L ) | 
						
							| 76 |  | simplr2 |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Y e. a ) | 
						
							| 77 |  | simplr3 |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> Z e. a ) | 
						
							| 78 | 1 2 3 71 72 73 74 74 75 76 77 | tglinethru |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> a = ( Y L Z ) ) | 
						
							| 79 | 70 78 | eleqtrd |  |-  ( ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) /\ Y =/= Z ) -> X e. ( Y L Z ) ) | 
						
							| 80 | 79 | ex |  |-  ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( Y =/= Z -> X e. ( Y L Z ) ) ) | 
						
							| 81 | 69 80 | biimtrrid |  |-  ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( -. Y = Z -> X e. ( Y L Z ) ) ) | 
						
							| 82 | 81 | orrd |  |-  ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( Y = Z \/ X e. ( Y L Z ) ) ) | 
						
							| 83 | 82 | orcomd |  |-  ( ( ( ph /\ a e. ran L ) /\ ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( X e. ( Y L Z ) \/ Y = Z ) ) | 
						
							| 84 | 83 | r19.29an |  |-  ( ( ph /\ E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) -> ( X e. ( Y L Z ) \/ Y = Z ) ) | 
						
							| 85 | 68 84 | impbida |  |-  ( ph -> ( ( X e. ( Y L Z ) \/ Y = Z ) <-> E. a e. ran L ( X e. a /\ Y e. a /\ Z e. a ) ) ) |