| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
| 2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
| 3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
| 4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgelrnln.x |
|- ( ph -> X e. B ) |
| 6 |
|
tgelrnln.y |
|- ( ph -> Y e. B ) |
| 7 |
|
tgelrnln.d |
|- ( ph -> X =/= Y ) |
| 8 |
|
df-ov |
|- ( X L Y ) = ( L ` <. X , Y >. ) |
| 9 |
1 3 2
|
tglnfn |
|- ( G e. TarskiG -> L Fn ( ( B X. B ) \ _I ) ) |
| 10 |
4 9
|
syl |
|- ( ph -> L Fn ( ( B X. B ) \ _I ) ) |
| 11 |
5 6
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 12 |
|
df-br |
|- ( X _I Y <-> <. X , Y >. e. _I ) |
| 13 |
|
ideqg |
|- ( Y e. B -> ( X _I Y <-> X = Y ) ) |
| 14 |
12 13
|
bitr3id |
|- ( Y e. B -> ( <. X , Y >. e. _I <-> X = Y ) ) |
| 15 |
14
|
necon3bbid |
|- ( Y e. B -> ( -. <. X , Y >. e. _I <-> X =/= Y ) ) |
| 16 |
15
|
biimpar |
|- ( ( Y e. B /\ X =/= Y ) -> -. <. X , Y >. e. _I ) |
| 17 |
6 7 16
|
syl2anc |
|- ( ph -> -. <. X , Y >. e. _I ) |
| 18 |
11 17
|
eldifd |
|- ( ph -> <. X , Y >. e. ( ( B X. B ) \ _I ) ) |
| 19 |
|
fnfvelrn |
|- ( ( L Fn ( ( B X. B ) \ _I ) /\ <. X , Y >. e. ( ( B X. B ) \ _I ) ) -> ( L ` <. X , Y >. ) e. ran L ) |
| 20 |
10 18 19
|
syl2anc |
|- ( ph -> ( L ` <. X , Y >. ) e. ran L ) |
| 21 |
8 20
|
eqeltrid |
|- ( ph -> ( X L Y ) e. ran L ) |