| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineintmo.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglineintmo.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tglineintmo.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
tglineintmo.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
coltr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
coltr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
coltr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
coltr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
coltr.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 10 |
|
coltr3.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 11 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ 𝑃 ) |
| 14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐷 ∈ 𝑃 ) |
| 15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 = 𝐶 ) |
| 17 |
16
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ( 𝐴 𝐼 𝐴 ) = ( 𝐴 𝐼 𝐶 ) ) |
| 18 |
15 17
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐷 ∈ ( 𝐴 𝐼 𝐴 ) ) |
| 19 |
1 11 2 12 13 14 18
|
axtgbtwnid |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 = 𝐷 ) |
| 20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 21 |
19 20
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 25 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐷 ∈ 𝑃 ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |
| 27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 28 |
1 2 3 22 23 24 25 26 27
|
btwnlng1 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐷 ∈ ( 𝐴 𝐿 𝐶 ) ) |
| 29 |
26
|
necomd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ≠ 𝐴 ) |
| 30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 31 |
1 3 2 4 6 7 9
|
tglngne |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 33 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 34 |
1 2 3 22 24 23 30 29 33 32
|
lnrot1 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐿 𝐴 ) ) |
| 35 |
1 2 3 22 24 23 29 30 32 34
|
tglineelsb2 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ( 𝐶 𝐿 𝐴 ) = ( 𝐶 𝐿 𝐵 ) ) |
| 36 |
1 2 3 22 23 24 26
|
tglinecom |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ( 𝐴 𝐿 𝐶 ) = ( 𝐶 𝐿 𝐴 ) ) |
| 37 |
1 2 3 4 6 7 31
|
tglinecom |
⊢ ( 𝜑 → ( 𝐵 𝐿 𝐶 ) = ( 𝐶 𝐿 𝐵 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ( 𝐵 𝐿 𝐶 ) = ( 𝐶 𝐿 𝐵 ) ) |
| 39 |
35 36 38
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ( 𝐴 𝐿 𝐶 ) = ( 𝐵 𝐿 𝐶 ) ) |
| 40 |
28 39
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 41 |
21 40
|
pm2.61dane |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ) |