| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineintmo.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tglineintmo.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | tglineintmo.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | tglineintmo.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | coltr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | coltr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | coltr.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | coltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | coltr.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 10 |  | coltr3.2 | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 11 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐺  ∈  TarskiG ) | 
						
							| 13 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐴  ∈  𝑃 ) | 
						
							| 14 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐷  ∈  𝑃 ) | 
						
							| 15 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐴  =  𝐶 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  ( 𝐴 𝐼 𝐴 )  =  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 18 | 15 17 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐷  ∈  ( 𝐴 𝐼 𝐴 ) ) | 
						
							| 19 | 1 11 2 12 13 14 18 | axtgbtwnid | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐴  =  𝐷 ) | 
						
							| 20 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐴  ∈  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 21 | 19 20 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐷  ∈  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 22 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐺  ∈  TarskiG ) | 
						
							| 23 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐴  ∈  𝑃 ) | 
						
							| 24 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐶  ∈  𝑃 ) | 
						
							| 25 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐷  ∈  𝑃 ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐴  ≠  𝐶 ) | 
						
							| 27 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 28 | 1 2 3 22 23 24 25 26 27 | btwnlng1 | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐷  ∈  ( 𝐴 𝐿 𝐶 ) ) | 
						
							| 29 | 26 | necomd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐶  ≠  𝐴 ) | 
						
							| 30 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐵  ∈  𝑃 ) | 
						
							| 31 | 1 3 2 4 6 7 9 | tglngne | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐵  ≠  𝐶 ) | 
						
							| 33 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐴  ∈  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 34 | 1 2 3 22 24 23 30 29 33 32 | lnrot1 | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐵  ∈  ( 𝐶 𝐿 𝐴 ) ) | 
						
							| 35 | 1 2 3 22 24 23 29 30 32 34 | tglineelsb2 | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  ( 𝐶 𝐿 𝐴 )  =  ( 𝐶 𝐿 𝐵 ) ) | 
						
							| 36 | 1 2 3 22 23 24 26 | tglinecom | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  ( 𝐴 𝐿 𝐶 )  =  ( 𝐶 𝐿 𝐴 ) ) | 
						
							| 37 | 1 2 3 4 6 7 31 | tglinecom | ⊢ ( 𝜑  →  ( 𝐵 𝐿 𝐶 )  =  ( 𝐶 𝐿 𝐵 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  ( 𝐵 𝐿 𝐶 )  =  ( 𝐶 𝐿 𝐵 ) ) | 
						
							| 39 | 35 36 38 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  ( 𝐴 𝐿 𝐶 )  =  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 40 | 28 39 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  𝐷  ∈  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 41 | 21 40 | pm2.61dane | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐵 𝐿 𝐶 ) ) |