| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineelsb2.p |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglineelsb2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tglineelsb2.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
tglineelsb2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglineelsb2.1 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 6 |
|
tglineelsb2.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
| 7 |
|
tglineelsb2.4 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
| 8 |
|
tglineelsb2.3 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) |
| 9 |
|
tglineelsb2.5 |
⊢ ( 𝜑 → 𝑆 ≠ 𝑃 ) |
| 10 |
|
tglineelsb2.6 |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑃 𝐿 𝑄 ) ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝐺 ∈ TarskiG ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑃 ∈ 𝐵 ) |
| 13 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑆 ∈ 𝐵 ) |
| 14 |
9
|
necomd |
⊢ ( 𝜑 → 𝑃 ≠ 𝑆 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑃 ≠ 𝑆 ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑄 ∈ 𝐵 ) |
| 17 |
7
|
necomd |
⊢ ( 𝜑 → 𝑄 ≠ 𝑃 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑄 ≠ 𝑃 ) |
| 19 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑆 ∈ ( 𝑃 𝐿 𝑄 ) ) |
| 20 |
1 2 3 11 16 12 13 18 19
|
lncom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑆 ∈ ( 𝑄 𝐿 𝑃 ) ) |
| 21 |
1 2 3 11 12 13 16 15 20 18
|
lnrot1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑄 ∈ ( 𝑃 𝐿 𝑆 ) ) |
| 22 |
1 3 2 4 5 6 7
|
tglnssp |
⊢ ( 𝜑 → ( 𝑃 𝐿 𝑄 ) ⊆ 𝐵 ) |
| 23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑥 ∈ 𝐵 ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) |
| 25 |
1 2 3 11 12 13 15 16 18 21 23 24
|
tglineeltr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) → 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) |
| 26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝐺 ∈ TarskiG ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑃 ∈ 𝐵 ) |
| 28 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑄 ∈ 𝐵 ) |
| 29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑃 ≠ 𝑄 ) |
| 30 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑆 ∈ 𝐵 ) |
| 31 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑆 ≠ 𝑃 ) |
| 32 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑆 ∈ ( 𝑃 𝐿 𝑄 ) ) |
| 33 |
1 3 2 4 5 8 14
|
tglnssp |
⊢ ( 𝜑 → ( 𝑃 𝐿 𝑆 ) ⊆ 𝐵 ) |
| 34 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) |
| 36 |
1 2 3 26 27 28 29 30 31 32 34 35
|
tglineeltr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) → 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ) |
| 37 |
25 36
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑃 𝐿 𝑄 ) ↔ 𝑥 ∈ ( 𝑃 𝐿 𝑆 ) ) ) |
| 38 |
37
|
eqrdv |
⊢ ( 𝜑 → ( 𝑃 𝐿 𝑄 ) = ( 𝑃 𝐿 𝑆 ) ) |