| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwnlng1.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | btwnlng1.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | btwnlng1.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | btwnlng1.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | btwnlng1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 6 |  | btwnlng1.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 7 |  | btwnlng1.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 8 |  | btwnlng1.d | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 9 |  | lnrot2.1 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑌 𝐿 𝑍 ) ) | 
						
							| 10 |  | lnrot2.2 | ⊢ ( 𝜑  →  𝑌  ≠  𝑍 ) | 
						
							| 11 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 12 | 1 11 2 4 6 5 7 | tgbtwncomb | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑌 𝐼 𝑍 )  ↔  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) ) ) | 
						
							| 13 |  | biidd | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ↔  𝑌  ∈  ( 𝑋 𝐼 𝑍 ) ) ) | 
						
							| 14 | 1 11 2 4 6 7 5 | tgbtwncomb | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( 𝑌 𝐼 𝑋 )  ↔  𝑍  ∈  ( 𝑋 𝐼 𝑌 ) ) ) | 
						
							| 15 | 12 13 14 | 3orbi123d | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  ( 𝑌 𝐼 𝑍 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ∨  𝑍  ∈  ( 𝑌 𝐼 𝑋 ) )  ↔  ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ∨  𝑍  ∈  ( 𝑋 𝐼 𝑌 ) ) ) ) | 
						
							| 16 |  | 3orrot | ⊢ ( ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 ) )  ↔  ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ∨  𝑍  ∈  ( 𝑋 𝐼 𝑌 ) ) ) | 
						
							| 17 | 15 16 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  ( 𝑌 𝐼 𝑍 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ∨  𝑍  ∈  ( 𝑌 𝐼 𝑋 ) )  ↔  ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 ) ) ) ) | 
						
							| 18 | 1 3 2 4 6 7 10 5 | tgellng | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ↔  ( 𝑋  ∈  ( 𝑌 𝐼 𝑍 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ∨  𝑍  ∈  ( 𝑌 𝐼 𝑋 ) ) ) ) | 
						
							| 19 | 1 3 2 4 5 6 8 7 | tgellng | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( 𝑋 𝐿 𝑌 )  ↔  ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 ) ) ) ) | 
						
							| 20 | 17 18 19 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ↔  𝑍  ∈  ( 𝑋 𝐿 𝑌 ) ) ) | 
						
							| 21 | 9 20 | mpbid | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋 𝐿 𝑌 ) ) |