Metamath Proof Explorer


Theorem ncolne1

Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019)

Ref Expression
Hypotheses tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
ncolne.x ( 𝜑𝑋𝐵 )
ncolne.y ( 𝜑𝑌𝐵 )
ncolne.z ( 𝜑𝑍𝐵 )
ncolne.2 ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
Assertion ncolne1 ( 𝜑𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
2 tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
3 tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
4 tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
5 ncolne.x ( 𝜑𝑋𝐵 )
6 ncolne.y ( 𝜑𝑌𝐵 )
7 ncolne.z ( 𝜑𝑍𝐵 )
8 ncolne.2 ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
9 4 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝐺 ∈ TarskiG )
10 6 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝑌𝐵 )
11 7 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝑍𝐵 )
12 5 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝑋𝐵 )
13 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
14 1 13 2 9 12 11 tgbtwntriv1 ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝑋 𝐼 𝑍 ) )
15 simpr ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
16 15 oveq1d ( ( 𝜑𝑋 = 𝑌 ) → ( 𝑋 𝐼 𝑍 ) = ( 𝑌 𝐼 𝑍 ) )
17 14 16 eleqtrd ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) )
18 1 3 2 9 10 11 12 17 btwncolg1 ( ( 𝜑𝑋 = 𝑌 ) → ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
19 8 18 mtand ( 𝜑 → ¬ 𝑋 = 𝑌 )
20 19 neqned ( 𝜑𝑋𝑌 )