| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
| 2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
| 3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
| 4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ncolne.x |
|- ( ph -> X e. B ) |
| 6 |
|
ncolne.y |
|- ( ph -> Y e. B ) |
| 7 |
|
ncolne.z |
|- ( ph -> Z e. B ) |
| 8 |
|
ncolne.2 |
|- ( ph -> -. ( X e. ( Y L Z ) \/ Y = Z ) ) |
| 9 |
4
|
adantr |
|- ( ( ph /\ X = Y ) -> G e. TarskiG ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ X = Y ) -> Y e. B ) |
| 11 |
7
|
adantr |
|- ( ( ph /\ X = Y ) -> Z e. B ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ X = Y ) -> X e. B ) |
| 13 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 14 |
1 13 2 9 12 11
|
tgbtwntriv1 |
|- ( ( ph /\ X = Y ) -> X e. ( X I Z ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ X = Y ) -> X = Y ) |
| 16 |
15
|
oveq1d |
|- ( ( ph /\ X = Y ) -> ( X I Z ) = ( Y I Z ) ) |
| 17 |
14 16
|
eleqtrd |
|- ( ( ph /\ X = Y ) -> X e. ( Y I Z ) ) |
| 18 |
1 3 2 9 10 11 12 17
|
btwncolg1 |
|- ( ( ph /\ X = Y ) -> ( X e. ( Y L Z ) \/ Y = Z ) ) |
| 19 |
8 18
|
mtand |
|- ( ph -> -. X = Y ) |
| 20 |
19
|
neqned |
|- ( ph -> X =/= Y ) |