Metamath Proof Explorer


Theorem ncolne1

Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
ncolne.x φXB
ncolne.y φYB
ncolne.z φZB
ncolne.2 φ¬XYLZY=Z
Assertion ncolne1 φXY

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 ncolne.x φXB
6 ncolne.y φYB
7 ncolne.z φZB
8 ncolne.2 φ¬XYLZY=Z
9 4 adantr φX=YG𝒢Tarski
10 6 adantr φX=YYB
11 7 adantr φX=YZB
12 5 adantr φX=YXB
13 eqid distG=distG
14 1 13 2 9 12 11 tgbtwntriv1 φX=YXXIZ
15 simpr φX=YX=Y
16 15 oveq1d φX=YXIZ=YIZ
17 14 16 eleqtrd φX=YXYIZ
18 1 3 2 9 10 11 12 17 btwncolg1 φX=YXYLZY=Z
19 8 18 mtand φ¬X=Y
20 19 neqned φXY