| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mirval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | mirval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | mirval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | mirval.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | mirval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | mirln.m | ⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 ) | 
						
							| 8 |  | mirln.1 | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 9 |  | mirln.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 10 |  | mirln.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 14 | 1 4 3 6 8 9 | tglnpt | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 16 | 1 2 3 4 5 13 15 7 | mircinv | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) | 
						
							| 17 | 12 16 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  =  𝐴 ) | 
						
							| 18 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 19 | 17 18 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝐷 ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 21 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 22 | 1 4 3 6 8 10 | tglnpt | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 24 | 1 2 3 4 5 20 21 7 23 | mircl | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 26 | 1 2 3 4 5 6 14 7 22 | mirbtwn | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) | 
						
							| 28 | 1 3 4 20 21 23 24 25 27 | btwnlng2 | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 29 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 30 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 31 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 32 | 1 3 4 20 21 23 25 25 29 30 31 | tglinethru | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐷  =  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 33 | 28 32 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝐷 ) | 
						
							| 34 | 19 33 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  𝐷 ) |