Metamath Proof Explorer


Theorem mirln

Description: If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirln.m 𝑀 = ( 𝑆𝐴 )
mirln.1 ( 𝜑𝐷 ∈ ran 𝐿 )
mirln.a ( 𝜑𝐴𝐷 )
mirln.b ( 𝜑𝐵𝐷 )
Assertion mirln ( 𝜑 → ( 𝑀𝐵 ) ∈ 𝐷 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirln.m 𝑀 = ( 𝑆𝐴 )
8 mirln.1 ( 𝜑𝐷 ∈ ran 𝐿 )
9 mirln.a ( 𝜑𝐴𝐷 )
10 mirln.b ( 𝜑𝐵𝐷 )
11 simpr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
12 11 fveq2d ( ( 𝜑𝐴 = 𝐵 ) → ( 𝑀𝐴 ) = ( 𝑀𝐵 ) )
13 6 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG )
14 1 4 3 6 8 9 tglnpt ( 𝜑𝐴𝑃 )
15 14 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴𝑃 )
16 1 2 3 4 5 13 15 7 mircinv ( ( 𝜑𝐴 = 𝐵 ) → ( 𝑀𝐴 ) = 𝐴 )
17 12 16 eqtr3d ( ( 𝜑𝐴 = 𝐵 ) → ( 𝑀𝐵 ) = 𝐴 )
18 9 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴𝐷 )
19 17 18 eqeltrd ( ( 𝜑𝐴 = 𝐵 ) → ( 𝑀𝐵 ) ∈ 𝐷 )
20 6 adantr ( ( 𝜑𝐴𝐵 ) → 𝐺 ∈ TarskiG )
21 14 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴𝑃 )
22 1 4 3 6 8 10 tglnpt ( 𝜑𝐵𝑃 )
23 22 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵𝑃 )
24 1 2 3 4 5 20 21 7 23 mircl ( ( 𝜑𝐴𝐵 ) → ( 𝑀𝐵 ) ∈ 𝑃 )
25 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
26 1 2 3 4 5 6 14 7 22 mirbtwn ( 𝜑𝐴 ∈ ( ( 𝑀𝐵 ) 𝐼 𝐵 ) )
27 26 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴 ∈ ( ( 𝑀𝐵 ) 𝐼 𝐵 ) )
28 1 3 4 20 21 23 24 25 27 btwnlng2 ( ( 𝜑𝐴𝐵 ) → ( 𝑀𝐵 ) ∈ ( 𝐴 𝐿 𝐵 ) )
29 8 adantr ( ( 𝜑𝐴𝐵 ) → 𝐷 ∈ ran 𝐿 )
30 9 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐷 )
31 10 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵𝐷 )
32 1 3 4 20 21 23 25 25 29 30 31 tglinethru ( ( 𝜑𝐴𝐵 ) → 𝐷 = ( 𝐴 𝐿 𝐵 ) )
33 28 32 eleqtrrd ( ( 𝜑𝐴𝐵 ) → ( 𝑀𝐵 ) ∈ 𝐷 )
34 19 33 pm2.61dane ( 𝜑 → ( 𝑀𝐵 ) ∈ 𝐷 )