Metamath Proof Explorer


Theorem btwnlng2

Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019)

Ref Expression
Hypotheses btwnlng1.p 𝑃 = ( Base ‘ 𝐺 )
btwnlng1.i 𝐼 = ( Itv ‘ 𝐺 )
btwnlng1.l 𝐿 = ( LineG ‘ 𝐺 )
btwnlng1.g ( 𝜑𝐺 ∈ TarskiG )
btwnlng1.x ( 𝜑𝑋𝑃 )
btwnlng1.y ( 𝜑𝑌𝑃 )
btwnlng1.z ( 𝜑𝑍𝑃 )
btwnlng1.d ( 𝜑𝑋𝑌 )
btwnlng2.1 ( 𝜑𝑋 ∈ ( 𝑍 𝐼 𝑌 ) )
Assertion btwnlng2 ( 𝜑𝑍 ∈ ( 𝑋 𝐿 𝑌 ) )

Proof

Step Hyp Ref Expression
1 btwnlng1.p 𝑃 = ( Base ‘ 𝐺 )
2 btwnlng1.i 𝐼 = ( Itv ‘ 𝐺 )
3 btwnlng1.l 𝐿 = ( LineG ‘ 𝐺 )
4 btwnlng1.g ( 𝜑𝐺 ∈ TarskiG )
5 btwnlng1.x ( 𝜑𝑋𝑃 )
6 btwnlng1.y ( 𝜑𝑌𝑃 )
7 btwnlng1.z ( 𝜑𝑍𝑃 )
8 btwnlng1.d ( 𝜑𝑋𝑌 )
9 btwnlng2.1 ( 𝜑𝑋 ∈ ( 𝑍 𝐼 𝑌 ) )
10 9 3mix2d ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) )
11 1 3 2 4 5 6 8 7 tgellng ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
12 10 11 mpbird ( 𝜑𝑍 ∈ ( 𝑋 𝐿 𝑌 ) )