Metamath Proof Explorer


Theorem btwnlng2

Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019)

Ref Expression
Hypotheses btwnlng1.p P=BaseG
btwnlng1.i I=ItvG
btwnlng1.l L=Line𝒢G
btwnlng1.g φG𝒢Tarski
btwnlng1.x φXP
btwnlng1.y φYP
btwnlng1.z φZP
btwnlng1.d φXY
btwnlng2.1 φXZIY
Assertion btwnlng2 φZXLY

Proof

Step Hyp Ref Expression
1 btwnlng1.p P=BaseG
2 btwnlng1.i I=ItvG
3 btwnlng1.l L=Line𝒢G
4 btwnlng1.g φG𝒢Tarski
5 btwnlng1.x φXP
6 btwnlng1.y φYP
7 btwnlng1.z φZP
8 btwnlng1.d φXY
9 btwnlng2.1 φXZIY
10 9 3mix2d φZXIYXZIYYXIZ
11 1 3 2 4 5 6 8 7 tgellng φZXLYZXIYXZIYYXIZ
12 10 11 mpbird φZXLY