Metamath Proof Explorer


Theorem mirln

Description: If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirln.m M=SA
mirln.1 φDranL
mirln.a φAD
mirln.b φBD
Assertion mirln φMBD

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirln.m M=SA
8 mirln.1 φDranL
9 mirln.a φAD
10 mirln.b φBD
11 simpr φA=BA=B
12 11 fveq2d φA=BMA=MB
13 6 adantr φA=BG𝒢Tarski
14 1 4 3 6 8 9 tglnpt φAP
15 14 adantr φA=BAP
16 1 2 3 4 5 13 15 7 mircinv φA=BMA=A
17 12 16 eqtr3d φA=BMB=A
18 9 adantr φA=BAD
19 17 18 eqeltrd φA=BMBD
20 6 adantr φABG𝒢Tarski
21 14 adantr φABAP
22 1 4 3 6 8 10 tglnpt φBP
23 22 adantr φABBP
24 1 2 3 4 5 20 21 7 23 mircl φABMBP
25 simpr φABAB
26 1 2 3 4 5 6 14 7 22 mirbtwn φAMBIB
27 26 adantr φABAMBIB
28 1 3 4 20 21 23 24 25 27 btwnlng2 φABMBALB
29 8 adantr φABDranL
30 9 adantr φABAD
31 10 adantr φABBD
32 1 3 4 20 21 23 25 25 29 30 31 tglinethru φABD=ALB
33 28 32 eleqtrrd φABMBD
34 19 33 pm2.61dane φMBD