Description: If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |
|
mirval.d | |
||
mirval.i | |
||
mirval.l | |
||
mirval.s | |
||
mirval.g | |
||
mirln.m | |
||
mirln.1 | |
||
mirln.a | |
||
mirln.b | |
||
Assertion | mirln | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |
|
2 | mirval.d | |
|
3 | mirval.i | |
|
4 | mirval.l | |
|
5 | mirval.s | |
|
6 | mirval.g | |
|
7 | mirln.m | |
|
8 | mirln.1 | |
|
9 | mirln.a | |
|
10 | mirln.b | |
|
11 | simpr | |
|
12 | 11 | fveq2d | |
13 | 6 | adantr | |
14 | 1 4 3 6 8 9 | tglnpt | |
15 | 14 | adantr | |
16 | 1 2 3 4 5 13 15 7 | mircinv | |
17 | 12 16 | eqtr3d | |
18 | 9 | adantr | |
19 | 17 18 | eqeltrd | |
20 | 6 | adantr | |
21 | 14 | adantr | |
22 | 1 4 3 6 8 10 | tglnpt | |
23 | 22 | adantr | |
24 | 1 2 3 4 5 20 21 7 23 | mircl | |
25 | simpr | |
|
26 | 1 2 3 4 5 6 14 7 22 | mirbtwn | |
27 | 26 | adantr | |
28 | 1 3 4 20 21 23 24 25 27 | btwnlng2 | |
29 | 8 | adantr | |
30 | 9 | adantr | |
31 | 10 | adantr | |
32 | 1 3 4 20 21 23 25 25 29 30 31 | tglinethru | |
33 | 28 32 | eleqtrrd | |
34 | 19 33 | pm2.61dane | |