| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mirval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | mirval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | mirval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | mirval.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | mirval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | mirln2.m | ⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 ) | 
						
							| 8 |  | mirln2.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 9 |  | mirln2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | mirln2.1 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 11 |  | mirln2.2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  𝐷 ) | 
						
							| 12 | 1 4 3 6 8 10 | tglnpt | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 13 | 1 2 3 4 5 6 9 7 12 | mirinv | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐵 )  =  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 14 | 13 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 15 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 16 | 14 15 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 18 | 1 4 3 6 8 11 | tglnpt | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 20 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 21 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 ) | 
						
							| 23 | 1 2 3 4 5 17 21 7 20 | mirbtwn | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐴  ∈  ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) | 
						
							| 24 | 1 3 4 17 19 20 21 22 23 | btwnlng1 | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐴  ∈  ( ( 𝑀 ‘ 𝐵 ) 𝐿 𝐵 ) ) | 
						
							| 25 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 26 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  𝐷 ) | 
						
							| 27 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 28 | 1 3 4 17 19 20 22 22 25 26 27 | tglinethru | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐷  =  ( ( 𝑀 ‘ 𝐵 ) 𝐿 𝐵 ) ) | 
						
							| 29 | 24 28 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  ≠  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 30 | 16 29 | pm2.61dane | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) |