| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | mirval.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | mirval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | mirval.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | mirval.s |  |-  S = ( pInvG ` G ) | 
						
							| 6 |  | mirval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | mirln2.m |  |-  M = ( S ` A ) | 
						
							| 8 |  | mirln2.d |  |-  ( ph -> D e. ran L ) | 
						
							| 9 |  | mirln2.a |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | mirln2.1 |  |-  ( ph -> B e. D ) | 
						
							| 11 |  | mirln2.2 |  |-  ( ph -> ( M ` B ) e. D ) | 
						
							| 12 | 1 4 3 6 8 10 | tglnpt |  |-  ( ph -> B e. P ) | 
						
							| 13 | 1 2 3 4 5 6 9 7 12 | mirinv |  |-  ( ph -> ( ( M ` B ) = B <-> A = B ) ) | 
						
							| 14 | 13 | biimpa |  |-  ( ( ph /\ ( M ` B ) = B ) -> A = B ) | 
						
							| 15 | 10 | adantr |  |-  ( ( ph /\ ( M ` B ) = B ) -> B e. D ) | 
						
							| 16 | 14 15 | eqeltrd |  |-  ( ( ph /\ ( M ` B ) = B ) -> A e. D ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> G e. TarskiG ) | 
						
							| 18 | 1 4 3 6 8 11 | tglnpt |  |-  ( ph -> ( M ` B ) e. P ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. P ) | 
						
							| 20 | 12 | adantr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> B e. P ) | 
						
							| 21 | 9 | adantr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. P ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) =/= B ) | 
						
							| 23 | 1 2 3 4 5 17 21 7 20 | mirbtwn |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) I B ) ) | 
						
							| 24 | 1 3 4 17 19 20 21 22 23 | btwnlng1 |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) L B ) ) | 
						
							| 25 | 8 | adantr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> D e. ran L ) | 
						
							| 26 | 11 | adantr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. D ) | 
						
							| 27 | 10 | adantr |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> B e. D ) | 
						
							| 28 | 1 3 4 17 19 20 22 22 25 26 27 | tglinethru |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> D = ( ( M ` B ) L B ) ) | 
						
							| 29 | 24 28 | eleqtrrd |  |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. D ) | 
						
							| 30 | 16 29 | pm2.61dane |  |-  ( ph -> A e. D ) |