Metamath Proof Explorer


Theorem mirln2

Description: If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirln2.m
|- M = ( S ` A )
mirln2.d
|- ( ph -> D e. ran L )
mirln2.a
|- ( ph -> A e. P )
mirln2.1
|- ( ph -> B e. D )
mirln2.2
|- ( ph -> ( M ` B ) e. D )
Assertion mirln2
|- ( ph -> A e. D )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirln2.m
 |-  M = ( S ` A )
8 mirln2.d
 |-  ( ph -> D e. ran L )
9 mirln2.a
 |-  ( ph -> A e. P )
10 mirln2.1
 |-  ( ph -> B e. D )
11 mirln2.2
 |-  ( ph -> ( M ` B ) e. D )
12 1 4 3 6 8 10 tglnpt
 |-  ( ph -> B e. P )
13 1 2 3 4 5 6 9 7 12 mirinv
 |-  ( ph -> ( ( M ` B ) = B <-> A = B ) )
14 13 biimpa
 |-  ( ( ph /\ ( M ` B ) = B ) -> A = B )
15 10 adantr
 |-  ( ( ph /\ ( M ` B ) = B ) -> B e. D )
16 14 15 eqeltrd
 |-  ( ( ph /\ ( M ` B ) = B ) -> A e. D )
17 6 adantr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> G e. TarskiG )
18 1 4 3 6 8 11 tglnpt
 |-  ( ph -> ( M ` B ) e. P )
19 18 adantr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. P )
20 12 adantr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> B e. P )
21 9 adantr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. P )
22 simpr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) =/= B )
23 1 2 3 4 5 17 21 7 20 mirbtwn
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) I B ) )
24 1 3 4 17 19 20 21 22 23 btwnlng1
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) L B ) )
25 8 adantr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> D e. ran L )
26 11 adantr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. D )
27 10 adantr
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> B e. D )
28 1 3 4 17 19 20 22 22 25 26 27 tglinethru
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> D = ( ( M ` B ) L B ) )
29 24 28 eleqtrrd
 |-  ( ( ph /\ ( M ` B ) =/= B ) -> A e. D )
30 16 29 pm2.61dane
 |-  ( ph -> A e. D )