Metamath Proof Explorer


Theorem mirinv

Description: The only invariant point of a point inversion Theorem 7.3 of Schwabhauser p. 49, Theorem 7.10 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
mirinv.b
|- ( ph -> B e. P )
Assertion mirinv
|- ( ph -> ( ( M ` B ) = B <-> A = B ) )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 mirinv.b
 |-  ( ph -> B e. P )
10 6 adantr
 |-  ( ( ph /\ ( M ` B ) = B ) -> G e. TarskiG )
11 9 adantr
 |-  ( ( ph /\ ( M ` B ) = B ) -> B e. P )
12 7 adantr
 |-  ( ( ph /\ ( M ` B ) = B ) -> A e. P )
13 1 2 3 4 5 10 12 8 11 mirbtwn
 |-  ( ( ph /\ ( M ` B ) = B ) -> A e. ( ( M ` B ) I B ) )
14 simpr
 |-  ( ( ph /\ ( M ` B ) = B ) -> ( M ` B ) = B )
15 14 oveq1d
 |-  ( ( ph /\ ( M ` B ) = B ) -> ( ( M ` B ) I B ) = ( B I B ) )
16 13 15 eleqtrd
 |-  ( ( ph /\ ( M ` B ) = B ) -> A e. ( B I B ) )
17 1 2 3 10 11 12 16 axtgbtwnid
 |-  ( ( ph /\ ( M ` B ) = B ) -> B = A )
18 17 eqcomd
 |-  ( ( ph /\ ( M ` B ) = B ) -> A = B )
19 6 adantr
 |-  ( ( ph /\ A = B ) -> G e. TarskiG )
20 7 adantr
 |-  ( ( ph /\ A = B ) -> A e. P )
21 9 adantr
 |-  ( ( ph /\ A = B ) -> B e. P )
22 eqidd
 |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( A .- B ) )
23 simpr
 |-  ( ( ph /\ A = B ) -> A = B )
24 1 2 3 19 21 21 tgbtwntriv1
 |-  ( ( ph /\ A = B ) -> B e. ( B I B ) )
25 23 24 eqeltrd
 |-  ( ( ph /\ A = B ) -> A e. ( B I B ) )
26 1 2 3 4 5 19 20 8 21 21 22 25 ismir
 |-  ( ( ph /\ A = B ) -> B = ( M ` B ) )
27 26 eqcomd
 |-  ( ( ph /\ A = B ) -> ( M ` B ) = B )
28 18 27 impbida
 |-  ( ph -> ( ( M ` B ) = B <-> A = B ) )