| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
|
mirinv.b |
|- ( ph -> B e. P ) |
| 10 |
|
mirne.1 |
|- ( ph -> B =/= A ) |
| 11 |
|
simpr |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` B ) = A ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` ( M ` B ) ) = ( M ` A ) ) |
| 13 |
1 2 3 4 5 6 7 8 9
|
mirmir |
|- ( ph -> ( M ` ( M ` B ) ) = B ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` ( M ` B ) ) = B ) |
| 15 |
|
eqid |
|- A = A |
| 16 |
1 2 3 4 5 6 7 8 7
|
mirinv |
|- ( ph -> ( ( M ` A ) = A <-> A = A ) ) |
| 17 |
15 16
|
mpbiri |
|- ( ph -> ( M ` A ) = A ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` A ) = A ) |
| 19 |
12 14 18
|
3eqtr3d |
|- ( ( ph /\ ( M ` B ) = A ) -> B = A ) |
| 20 |
10
|
adantr |
|- ( ( ph /\ ( M ` B ) = A ) -> B =/= A ) |
| 21 |
20
|
neneqd |
|- ( ( ph /\ ( M ` B ) = A ) -> -. B = A ) |
| 22 |
19 21
|
pm2.65da |
|- ( ph -> -. ( M ` B ) = A ) |
| 23 |
22
|
neqned |
|- ( ph -> ( M ` B ) =/= A ) |