| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
|
mirinv.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 11 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 13 |
1 2 3 4 5 10 12 8 11
|
mirbtwn |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → ( 𝑀 ‘ 𝐵 ) = 𝐵 ) |
| 15 |
14
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) = ( 𝐵 𝐼 𝐵 ) ) |
| 16 |
13 15
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐼 𝐵 ) ) |
| 17 |
1 2 3 10 11 12 16
|
axtgbtwnid |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐵 = 𝐴 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐴 = 𝐵 ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 22 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 24 |
1 2 3 19 21 21
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ ( 𝐵 𝐼 𝐵 ) ) |
| 25 |
23 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐼 𝐵 ) ) |
| 26 |
1 2 3 4 5 19 20 8 21 21 22 25
|
ismir |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 = ( 𝑀 ‘ 𝐵 ) ) |
| 27 |
26
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐵 ) = 𝐵 ) |
| 28 |
18 27
|
impbida |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐵 ) = 𝐵 ↔ 𝐴 = 𝐵 ) ) |