| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mirval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | mirval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | mirval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | mirval.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | mirval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | mirhl.m | ⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 ) | 
						
							| 8 |  | mirhl.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 9 |  | mirhl.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | mirhl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 11 |  | mirhl.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 12 |  | mirhl.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 13 |  | mirhl2.1 | ⊢ ( 𝜑  →  𝑋  ≠  𝐴 ) | 
						
							| 14 |  | mirhl2.2 | ⊢ ( 𝜑  →  𝑌  ≠  𝐴 ) | 
						
							| 15 |  | mirhl2.3 | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑋 𝐼 ( 𝑀 ‘ 𝑌 ) ) ) | 
						
							| 16 | 1 2 3 4 5 6 9 7 11 | mircl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑌 )  ∈  𝑃 ) | 
						
							| 17 | 1 2 3 4 5 6 9 7 11 14 | mirne | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑌 )  ≠  𝐴 ) | 
						
							| 18 | 1 2 3 6 10 9 16 15 | tgbtwncom | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑀 ‘ 𝑌 ) 𝐼 𝑋 ) ) | 
						
							| 19 | 1 2 3 4 5 6 9 7 11 | mirbtwn | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑀 ‘ 𝑌 ) 𝐼 𝑌 ) ) | 
						
							| 20 | 1 3 6 16 9 10 11 17 18 19 | tgbtwnconn2 | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐴 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝐴 𝐼 𝑋 ) ) ) | 
						
							| 21 | 1 3 8 10 11 9 6 | ishlg | ⊢ ( 𝜑  →  ( 𝑋 ( 𝐾 ‘ 𝐴 ) 𝑌  ↔  ( 𝑋  ≠  𝐴  ∧  𝑌  ≠  𝐴  ∧  ( 𝑋  ∈  ( 𝐴 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝐴 𝐼 𝑋 ) ) ) ) ) | 
						
							| 22 | 13 14 20 21 | mpbir3and | ⊢ ( 𝜑  →  𝑋 ( 𝐾 ‘ 𝐴 ) 𝑌 ) |