Metamath Proof Explorer


Theorem mirhl2

Description: Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirhl.m 𝑀 = ( 𝑆𝐴 )
mirhl.k 𝐾 = ( hlG ‘ 𝐺 )
mirhl.a ( 𝜑𝐴𝑃 )
mirhl.x ( 𝜑𝑋𝑃 )
mirhl.y ( 𝜑𝑌𝑃 )
mirhl.z ( 𝜑𝑍𝑃 )
mirhl2.1 ( 𝜑𝑋𝐴 )
mirhl2.2 ( 𝜑𝑌𝐴 )
mirhl2.3 ( 𝜑𝐴 ∈ ( 𝑋 𝐼 ( 𝑀𝑌 ) ) )
Assertion mirhl2 ( 𝜑𝑋 ( 𝐾𝐴 ) 𝑌 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirhl.m 𝑀 = ( 𝑆𝐴 )
8 mirhl.k 𝐾 = ( hlG ‘ 𝐺 )
9 mirhl.a ( 𝜑𝐴𝑃 )
10 mirhl.x ( 𝜑𝑋𝑃 )
11 mirhl.y ( 𝜑𝑌𝑃 )
12 mirhl.z ( 𝜑𝑍𝑃 )
13 mirhl2.1 ( 𝜑𝑋𝐴 )
14 mirhl2.2 ( 𝜑𝑌𝐴 )
15 mirhl2.3 ( 𝜑𝐴 ∈ ( 𝑋 𝐼 ( 𝑀𝑌 ) ) )
16 1 2 3 4 5 6 9 7 11 mircl ( 𝜑 → ( 𝑀𝑌 ) ∈ 𝑃 )
17 1 2 3 4 5 6 9 7 11 14 mirne ( 𝜑 → ( 𝑀𝑌 ) ≠ 𝐴 )
18 1 2 3 6 10 9 16 15 tgbtwncom ( 𝜑𝐴 ∈ ( ( 𝑀𝑌 ) 𝐼 𝑋 ) )
19 1 2 3 4 5 6 9 7 11 mirbtwn ( 𝜑𝐴 ∈ ( ( 𝑀𝑌 ) 𝐼 𝑌 ) )
20 1 3 6 16 9 10 11 17 18 19 tgbtwnconn2 ( 𝜑 → ( 𝑋 ∈ ( 𝐴 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝐴 𝐼 𝑋 ) ) )
21 1 3 8 10 11 9 6 ishlg ( 𝜑 → ( 𝑋 ( 𝐾𝐴 ) 𝑌 ↔ ( 𝑋𝐴𝑌𝐴 ∧ ( 𝑋 ∈ ( 𝐴 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝐴 𝐼 𝑋 ) ) ) ) )
22 13 14 20 21 mpbir3and ( 𝜑𝑋 ( 𝐾𝐴 ) 𝑌 )