Metamath Proof Explorer


Theorem mircgrextend

Description: Link congruence over a pair of mirror points. cf tgcgrextend . (Contributed by Thierry Arnoux, 4-Oct-2020)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirtrcgr.e = ( cgrG ‘ 𝐺 )
mirtrcgr.m 𝑀 = ( 𝑆𝐵 )
mirtrcgr.n 𝑁 = ( 𝑆𝑌 )
mirtrcgr.a ( 𝜑𝐴𝑃 )
mirtrcgr.b ( 𝜑𝐵𝑃 )
mirtrcgr.x ( 𝜑𝑋𝑃 )
mirtrcgr.y ( 𝜑𝑌𝑃 )
mircgrextend.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) )
Assertion mircgrextend ( 𝜑 → ( 𝐴 ( 𝑀𝐴 ) ) = ( 𝑋 ( 𝑁𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirtrcgr.e = ( cgrG ‘ 𝐺 )
8 mirtrcgr.m 𝑀 = ( 𝑆𝐵 )
9 mirtrcgr.n 𝑁 = ( 𝑆𝑌 )
10 mirtrcgr.a ( 𝜑𝐴𝑃 )
11 mirtrcgr.b ( 𝜑𝐵𝑃 )
12 mirtrcgr.x ( 𝜑𝑋𝑃 )
13 mirtrcgr.y ( 𝜑𝑌𝑃 )
14 mircgrextend.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) )
15 1 2 3 4 5 6 11 8 10 mircl ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑃 )
16 1 2 3 4 5 6 13 9 12 mircl ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝑃 )
17 1 2 3 4 5 6 11 8 10 mirbtwn ( 𝜑𝐵 ∈ ( ( 𝑀𝐴 ) 𝐼 𝐴 ) )
18 1 2 3 6 15 11 10 17 tgbtwncom ( 𝜑𝐵 ∈ ( 𝐴 𝐼 ( 𝑀𝐴 ) ) )
19 1 2 3 4 5 6 13 9 12 mirbtwn ( 𝜑𝑌 ∈ ( ( 𝑁𝑋 ) 𝐼 𝑋 ) )
20 1 2 3 6 16 13 12 19 tgbtwncom ( 𝜑𝑌 ∈ ( 𝑋 𝐼 ( 𝑁𝑋 ) ) )
21 1 2 3 6 10 11 12 13 14 tgcgrcomlr ( 𝜑 → ( 𝐵 𝐴 ) = ( 𝑌 𝑋 ) )
22 1 2 3 4 5 6 11 8 10 mircgr ( 𝜑 → ( 𝐵 ( 𝑀𝐴 ) ) = ( 𝐵 𝐴 ) )
23 1 2 3 4 5 6 13 9 12 mircgr ( 𝜑 → ( 𝑌 ( 𝑁𝑋 ) ) = ( 𝑌 𝑋 ) )
24 21 22 23 3eqtr4d ( 𝜑 → ( 𝐵 ( 𝑀𝐴 ) ) = ( 𝑌 ( 𝑁𝑋 ) ) )
25 1 2 3 6 10 11 15 12 13 16 18 20 14 24 tgcgrextend ( 𝜑 → ( 𝐴 ( 𝑀𝐴 ) ) = ( 𝑋 ( 𝑁𝑋 ) ) )