Metamath Proof Explorer


Theorem mircgrextend

Description: Link congruence over a pair of mirror points. cf tgcgrextend . (Contributed by Thierry Arnoux, 4-Oct-2020)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirtrcgr.e
|- .~ = ( cgrG ` G )
mirtrcgr.m
|- M = ( S ` B )
mirtrcgr.n
|- N = ( S ` Y )
mirtrcgr.a
|- ( ph -> A e. P )
mirtrcgr.b
|- ( ph -> B e. P )
mirtrcgr.x
|- ( ph -> X e. P )
mirtrcgr.y
|- ( ph -> Y e. P )
mircgrextend.1
|- ( ph -> ( A .- B ) = ( X .- Y ) )
Assertion mircgrextend
|- ( ph -> ( A .- ( M ` A ) ) = ( X .- ( N ` X ) ) )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirtrcgr.e
 |-  .~ = ( cgrG ` G )
8 mirtrcgr.m
 |-  M = ( S ` B )
9 mirtrcgr.n
 |-  N = ( S ` Y )
10 mirtrcgr.a
 |-  ( ph -> A e. P )
11 mirtrcgr.b
 |-  ( ph -> B e. P )
12 mirtrcgr.x
 |-  ( ph -> X e. P )
13 mirtrcgr.y
 |-  ( ph -> Y e. P )
14 mircgrextend.1
 |-  ( ph -> ( A .- B ) = ( X .- Y ) )
15 1 2 3 4 5 6 11 8 10 mircl
 |-  ( ph -> ( M ` A ) e. P )
16 1 2 3 4 5 6 13 9 12 mircl
 |-  ( ph -> ( N ` X ) e. P )
17 1 2 3 4 5 6 11 8 10 mirbtwn
 |-  ( ph -> B e. ( ( M ` A ) I A ) )
18 1 2 3 6 15 11 10 17 tgbtwncom
 |-  ( ph -> B e. ( A I ( M ` A ) ) )
19 1 2 3 4 5 6 13 9 12 mirbtwn
 |-  ( ph -> Y e. ( ( N ` X ) I X ) )
20 1 2 3 6 16 13 12 19 tgbtwncom
 |-  ( ph -> Y e. ( X I ( N ` X ) ) )
21 1 2 3 6 10 11 12 13 14 tgcgrcomlr
 |-  ( ph -> ( B .- A ) = ( Y .- X ) )
22 1 2 3 4 5 6 11 8 10 mircgr
 |-  ( ph -> ( B .- ( M ` A ) ) = ( B .- A ) )
23 1 2 3 4 5 6 13 9 12 mircgr
 |-  ( ph -> ( Y .- ( N ` X ) ) = ( Y .- X ) )
24 21 22 23 3eqtr4d
 |-  ( ph -> ( B .- ( M ` A ) ) = ( Y .- ( N ` X ) ) )
25 1 2 3 6 10 11 15 12 13 16 18 20 14 24 tgcgrextend
 |-  ( ph -> ( A .- ( M ` A ) ) = ( X .- ( N ` X ) ) )