Metamath Proof Explorer


Theorem mircgrextend

Description: Link congruence over a pair of mirror points. cf tgcgrextend . (Contributed by Thierry Arnoux, 4-Oct-2020)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirtrcgr.e ˙ = 𝒢 G
mirtrcgr.m M = S B
mirtrcgr.n N = S Y
mirtrcgr.a φ A P
mirtrcgr.b φ B P
mirtrcgr.x φ X P
mirtrcgr.y φ Y P
mircgrextend.1 φ A - ˙ B = X - ˙ Y
Assertion mircgrextend φ A - ˙ M A = X - ˙ N X

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirtrcgr.e ˙ = 𝒢 G
8 mirtrcgr.m M = S B
9 mirtrcgr.n N = S Y
10 mirtrcgr.a φ A P
11 mirtrcgr.b φ B P
12 mirtrcgr.x φ X P
13 mirtrcgr.y φ Y P
14 mircgrextend.1 φ A - ˙ B = X - ˙ Y
15 1 2 3 4 5 6 11 8 10 mircl φ M A P
16 1 2 3 4 5 6 13 9 12 mircl φ N X P
17 1 2 3 4 5 6 11 8 10 mirbtwn φ B M A I A
18 1 2 3 6 15 11 10 17 tgbtwncom φ B A I M A
19 1 2 3 4 5 6 13 9 12 mirbtwn φ Y N X I X
20 1 2 3 6 16 13 12 19 tgbtwncom φ Y X I N X
21 1 2 3 6 10 11 12 13 14 tgcgrcomlr φ B - ˙ A = Y - ˙ X
22 1 2 3 4 5 6 11 8 10 mircgr φ B - ˙ M A = B - ˙ A
23 1 2 3 4 5 6 13 9 12 mircgr φ Y - ˙ N X = Y - ˙ X
24 21 22 23 3eqtr4d φ B - ˙ M A = Y - ˙ N X
25 1 2 3 6 10 11 15 12 13 16 18 20 14 24 tgcgrextend φ A - ˙ M A = X - ˙ N X