Metamath Proof Explorer


Theorem mirtrcgr

Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirtrcgr.e
|- .~ = ( cgrG ` G )
mirtrcgr.m
|- M = ( S ` B )
mirtrcgr.n
|- N = ( S ` Y )
mirtrcgr.a
|- ( ph -> A e. P )
mirtrcgr.b
|- ( ph -> B e. P )
mirtrcgr.x
|- ( ph -> X e. P )
mirtrcgr.y
|- ( ph -> Y e. P )
mirtrcgr.c
|- ( ph -> C e. P )
mirtrcgr.z
|- ( ph -> Z e. P )
mirtrcgr.1
|- ( ph -> A =/= B )
mirtrcgr.2
|- ( ph -> <" A B C "> .~ <" X Y Z "> )
Assertion mirtrcgr
|- ( ph -> <" ( M ` A ) B C "> .~ <" ( N ` X ) Y Z "> )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirtrcgr.e
 |-  .~ = ( cgrG ` G )
8 mirtrcgr.m
 |-  M = ( S ` B )
9 mirtrcgr.n
 |-  N = ( S ` Y )
10 mirtrcgr.a
 |-  ( ph -> A e. P )
11 mirtrcgr.b
 |-  ( ph -> B e. P )
12 mirtrcgr.x
 |-  ( ph -> X e. P )
13 mirtrcgr.y
 |-  ( ph -> Y e. P )
14 mirtrcgr.c
 |-  ( ph -> C e. P )
15 mirtrcgr.z
 |-  ( ph -> Z e. P )
16 mirtrcgr.1
 |-  ( ph -> A =/= B )
17 mirtrcgr.2
 |-  ( ph -> <" A B C "> .~ <" X Y Z "> )
18 1 2 3 4 5 6 11 8 10 mircl
 |-  ( ph -> ( M ` A ) e. P )
19 1 2 3 4 5 6 13 9 12 mircl
 |-  ( ph -> ( N ` X ) e. P )
20 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp1
 |-  ( ph -> ( A .- B ) = ( X .- Y ) )
21 1 2 3 6 10 11 12 13 20 tgcgrcomlr
 |-  ( ph -> ( B .- A ) = ( Y .- X ) )
22 1 2 3 4 5 6 11 8 10 mircgr
 |-  ( ph -> ( B .- ( M ` A ) ) = ( B .- A ) )
23 1 2 3 4 5 6 13 9 12 mircgr
 |-  ( ph -> ( Y .- ( N ` X ) ) = ( Y .- X ) )
24 21 22 23 3eqtr4d
 |-  ( ph -> ( B .- ( M ` A ) ) = ( Y .- ( N ` X ) ) )
25 1 2 3 6 11 18 13 19 24 tgcgrcomlr
 |-  ( ph -> ( ( M ` A ) .- B ) = ( ( N ` X ) .- Y ) )
26 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp2
 |-  ( ph -> ( B .- C ) = ( Y .- Z ) )
27 1 2 3 4 5 6 11 8 10 mirbtwn
 |-  ( ph -> B e. ( ( M ` A ) I A ) )
28 1 4 3 6 18 10 11 27 btwncolg1
 |-  ( ph -> ( B e. ( ( M ` A ) L A ) \/ ( M ` A ) = A ) )
29 1 4 3 6 18 10 11 28 colcom
 |-  ( ph -> ( B e. ( A L ( M ` A ) ) \/ A = ( M ` A ) ) )
30 1 2 3 4 5 6 7 8 9 10 11 12 13 20 mircgrextend
 |-  ( ph -> ( A .- ( M ` A ) ) = ( X .- ( N ` X ) ) )
31 1 2 3 6 10 18 12 19 30 tgcgrcomlr
 |-  ( ph -> ( ( M ` A ) .- A ) = ( ( N ` X ) .- X ) )
32 1 2 7 6 10 11 18 12 13 19 20 24 31 trgcgr
 |-  ( ph -> <" A B ( M ` A ) "> .~ <" X Y ( N ` X ) "> )
33 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp3
 |-  ( ph -> ( C .- A ) = ( Z .- X ) )
34 1 2 3 6 14 10 15 12 33 tgcgrcomlr
 |-  ( ph -> ( A .- C ) = ( X .- Z ) )
35 1 4 3 6 10 11 18 7 12 13 2 14 19 15 29 32 34 26 16 tgfscgr
 |-  ( ph -> ( ( M ` A ) .- C ) = ( ( N ` X ) .- Z ) )
36 1 2 3 6 18 14 19 15 35 tgcgrcomlr
 |-  ( ph -> ( C .- ( M ` A ) ) = ( Z .- ( N ` X ) ) )
37 1 2 7 6 18 11 14 19 13 15 25 26 36 trgcgr
 |-  ( ph -> <" ( M ` A ) B C "> .~ <" ( N ` X ) Y Z "> )