Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mirval.p | |- P = ( Base ` G ) | |
| mirval.d | |- .- = ( dist ` G ) | ||
| mirval.i | |- I = ( Itv ` G ) | ||
| mirval.l | |- L = ( LineG ` G ) | ||
| mirval.s | |- S = ( pInvG ` G ) | ||
| mirval.g | |- ( ph -> G e. TarskiG ) | ||
| mirtrcgr.e | |- .~ = ( cgrG ` G ) | ||
| mirtrcgr.m | |- M = ( S ` B ) | ||
| mirtrcgr.n | |- N = ( S ` Y ) | ||
| mirtrcgr.a | |- ( ph -> A e. P ) | ||
| mirtrcgr.b | |- ( ph -> B e. P ) | ||
| mirtrcgr.x | |- ( ph -> X e. P ) | ||
| mirtrcgr.y | |- ( ph -> Y e. P ) | ||
| mirtrcgr.c | |- ( ph -> C e. P ) | ||
| mirtrcgr.z | |- ( ph -> Z e. P ) | ||
| mirtrcgr.1 | |- ( ph -> A =/= B ) | ||
| mirtrcgr.2 | |- ( ph -> <" A B C "> .~ <" X Y Z "> ) | ||
| Assertion | mirtrcgr | |- ( ph -> <" ( M ` A ) B C "> .~ <" ( N ` X ) Y Z "> ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mirval.p | |- P = ( Base ` G ) | |
| 2 | mirval.d | |- .- = ( dist ` G ) | |
| 3 | mirval.i | |- I = ( Itv ` G ) | |
| 4 | mirval.l | |- L = ( LineG ` G ) | |
| 5 | mirval.s | |- S = ( pInvG ` G ) | |
| 6 | mirval.g | |- ( ph -> G e. TarskiG ) | |
| 7 | mirtrcgr.e | |- .~ = ( cgrG ` G ) | |
| 8 | mirtrcgr.m | |- M = ( S ` B ) | |
| 9 | mirtrcgr.n | |- N = ( S ` Y ) | |
| 10 | mirtrcgr.a | |- ( ph -> A e. P ) | |
| 11 | mirtrcgr.b | |- ( ph -> B e. P ) | |
| 12 | mirtrcgr.x | |- ( ph -> X e. P ) | |
| 13 | mirtrcgr.y | |- ( ph -> Y e. P ) | |
| 14 | mirtrcgr.c | |- ( ph -> C e. P ) | |
| 15 | mirtrcgr.z | |- ( ph -> Z e. P ) | |
| 16 | mirtrcgr.1 | |- ( ph -> A =/= B ) | |
| 17 | mirtrcgr.2 | |- ( ph -> <" A B C "> .~ <" X Y Z "> ) | |
| 18 | 1 2 3 4 5 6 11 8 10 | mircl | |- ( ph -> ( M ` A ) e. P ) | 
| 19 | 1 2 3 4 5 6 13 9 12 | mircl | |- ( ph -> ( N ` X ) e. P ) | 
| 20 | 1 2 3 7 6 10 11 14 12 13 15 17 | cgr3simp1 | |- ( ph -> ( A .- B ) = ( X .- Y ) ) | 
| 21 | 1 2 3 6 10 11 12 13 20 | tgcgrcomlr | |- ( ph -> ( B .- A ) = ( Y .- X ) ) | 
| 22 | 1 2 3 4 5 6 11 8 10 | mircgr | |- ( ph -> ( B .- ( M ` A ) ) = ( B .- A ) ) | 
| 23 | 1 2 3 4 5 6 13 9 12 | mircgr | |- ( ph -> ( Y .- ( N ` X ) ) = ( Y .- X ) ) | 
| 24 | 21 22 23 | 3eqtr4d | |- ( ph -> ( B .- ( M ` A ) ) = ( Y .- ( N ` X ) ) ) | 
| 25 | 1 2 3 6 11 18 13 19 24 | tgcgrcomlr | |- ( ph -> ( ( M ` A ) .- B ) = ( ( N ` X ) .- Y ) ) | 
| 26 | 1 2 3 7 6 10 11 14 12 13 15 17 | cgr3simp2 | |- ( ph -> ( B .- C ) = ( Y .- Z ) ) | 
| 27 | 1 2 3 4 5 6 11 8 10 | mirbtwn | |- ( ph -> B e. ( ( M ` A ) I A ) ) | 
| 28 | 1 4 3 6 18 10 11 27 | btwncolg1 | |- ( ph -> ( B e. ( ( M ` A ) L A ) \/ ( M ` A ) = A ) ) | 
| 29 | 1 4 3 6 18 10 11 28 | colcom | |- ( ph -> ( B e. ( A L ( M ` A ) ) \/ A = ( M ` A ) ) ) | 
| 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 20 | mircgrextend | |- ( ph -> ( A .- ( M ` A ) ) = ( X .- ( N ` X ) ) ) | 
| 31 | 1 2 3 6 10 18 12 19 30 | tgcgrcomlr | |- ( ph -> ( ( M ` A ) .- A ) = ( ( N ` X ) .- X ) ) | 
| 32 | 1 2 7 6 10 11 18 12 13 19 20 24 31 | trgcgr | |- ( ph -> <" A B ( M ` A ) "> .~ <" X Y ( N ` X ) "> ) | 
| 33 | 1 2 3 7 6 10 11 14 12 13 15 17 | cgr3simp3 | |- ( ph -> ( C .- A ) = ( Z .- X ) ) | 
| 34 | 1 2 3 6 14 10 15 12 33 | tgcgrcomlr | |- ( ph -> ( A .- C ) = ( X .- Z ) ) | 
| 35 | 1 4 3 6 10 11 18 7 12 13 2 14 19 15 29 32 34 26 16 | tgfscgr | |- ( ph -> ( ( M ` A ) .- C ) = ( ( N ` X ) .- Z ) ) | 
| 36 | 1 2 3 6 18 14 19 15 35 | tgcgrcomlr | |- ( ph -> ( C .- ( M ` A ) ) = ( Z .- ( N ` X ) ) ) | 
| 37 | 1 2 7 6 18 11 14 19 13 15 25 26 36 | trgcgr | |- ( ph -> <" ( M ` A ) B C "> .~ <" ( N ` X ) Y Z "> ) |