Metamath Proof Explorer


Theorem mirauto

Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirauto.m
|- M = ( S ` T )
mirauto.x
|- X = ( M ` A )
mirauto.y
|- Y = ( M ` B )
mirauto.z
|- Z = ( M ` C )
mirauto.0
|- ( ph -> T e. P )
mirauto.1
|- ( ph -> A e. P )
mirauto.2
|- ( ph -> B e. P )
mirauto.3
|- ( ph -> C e. P )
mirauto.4
|- ( ph -> ( ( S ` A ) ` B ) = C )
Assertion mirauto
|- ( ph -> ( ( S ` X ) ` Y ) = Z )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirauto.m
 |-  M = ( S ` T )
8 mirauto.x
 |-  X = ( M ` A )
9 mirauto.y
 |-  Y = ( M ` B )
10 mirauto.z
 |-  Z = ( M ` C )
11 mirauto.0
 |-  ( ph -> T e. P )
12 mirauto.1
 |-  ( ph -> A e. P )
13 mirauto.2
 |-  ( ph -> B e. P )
14 mirauto.3
 |-  ( ph -> C e. P )
15 mirauto.4
 |-  ( ph -> ( ( S ` A ) ` B ) = C )
16 1 2 3 4 5 6 11 7 mirf
 |-  ( ph -> M : P --> P )
17 16 12 ffvelrnd
 |-  ( ph -> ( M ` A ) e. P )
18 8 17 eqeltrid
 |-  ( ph -> X e. P )
19 eqid
 |-  ( S ` X ) = ( S ` X )
20 16 13 ffvelrnd
 |-  ( ph -> ( M ` B ) e. P )
21 9 20 eqeltrid
 |-  ( ph -> Y e. P )
22 16 14 ffvelrnd
 |-  ( ph -> ( M ` C ) e. P )
23 10 22 eqeltrid
 |-  ( ph -> Z e. P )
24 15 14 eqeltrd
 |-  ( ph -> ( ( S ` A ) ` B ) e. P )
25 eqid
 |-  ( S ` A ) = ( S ` A )
26 1 2 3 4 5 6 12 25 13 mircgr
 |-  ( ph -> ( A .- ( ( S ` A ) ` B ) ) = ( A .- B ) )
27 1 2 3 4 5 6 11 7 12 24 12 13 26 mircgrs
 |-  ( ph -> ( ( M ` A ) .- ( M ` ( ( S ` A ) ` B ) ) ) = ( ( M ` A ) .- ( M ` B ) ) )
28 8 a1i
 |-  ( ph -> X = ( M ` A ) )
29 15 fveq2d
 |-  ( ph -> ( M ` ( ( S ` A ) ` B ) ) = ( M ` C ) )
30 10 29 eqtr4id
 |-  ( ph -> Z = ( M ` ( ( S ` A ) ` B ) ) )
31 28 30 oveq12d
 |-  ( ph -> ( X .- Z ) = ( ( M ` A ) .- ( M ` ( ( S ` A ) ` B ) ) ) )
32 8 9 oveq12i
 |-  ( X .- Y ) = ( ( M ` A ) .- ( M ` B ) )
33 32 a1i
 |-  ( ph -> ( X .- Y ) = ( ( M ` A ) .- ( M ` B ) ) )
34 27 31 33 3eqtr4d
 |-  ( ph -> ( X .- Z ) = ( X .- Y ) )
35 1 2 3 4 5 6 12 25 13 mirbtwn
 |-  ( ph -> A e. ( ( ( S ` A ) ` B ) I B ) )
36 15 oveq1d
 |-  ( ph -> ( ( ( S ` A ) ` B ) I B ) = ( C I B ) )
37 35 36 eleqtrd
 |-  ( ph -> A e. ( C I B ) )
38 1 2 3 4 5 6 11 7 14 12 13 37 mirbtwni
 |-  ( ph -> ( M ` A ) e. ( ( M ` C ) I ( M ` B ) ) )
39 10 9 oveq12i
 |-  ( Z I Y ) = ( ( M ` C ) I ( M ` B ) )
40 38 8 39 3eltr4g
 |-  ( ph -> X e. ( Z I Y ) )
41 1 2 3 4 5 6 18 19 21 23 34 40 ismir
 |-  ( ph -> Z = ( ( S ` X ) ` Y ) )
42 41 eqcomd
 |-  ( ph -> ( ( S ` X ) ` Y ) = Z )