| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirauto.m |
|- M = ( S ` T ) |
| 8 |
|
mirauto.x |
|- X = ( M ` A ) |
| 9 |
|
mirauto.y |
|- Y = ( M ` B ) |
| 10 |
|
mirauto.z |
|- Z = ( M ` C ) |
| 11 |
|
mirauto.0 |
|- ( ph -> T e. P ) |
| 12 |
|
mirauto.1 |
|- ( ph -> A e. P ) |
| 13 |
|
mirauto.2 |
|- ( ph -> B e. P ) |
| 14 |
|
mirauto.3 |
|- ( ph -> C e. P ) |
| 15 |
|
mirauto.4 |
|- ( ph -> ( ( S ` A ) ` B ) = C ) |
| 16 |
1 2 3 4 5 6 11 7
|
mirf |
|- ( ph -> M : P --> P ) |
| 17 |
16 12
|
ffvelcdmd |
|- ( ph -> ( M ` A ) e. P ) |
| 18 |
8 17
|
eqeltrid |
|- ( ph -> X e. P ) |
| 19 |
|
eqid |
|- ( S ` X ) = ( S ` X ) |
| 20 |
16 13
|
ffvelcdmd |
|- ( ph -> ( M ` B ) e. P ) |
| 21 |
9 20
|
eqeltrid |
|- ( ph -> Y e. P ) |
| 22 |
16 14
|
ffvelcdmd |
|- ( ph -> ( M ` C ) e. P ) |
| 23 |
10 22
|
eqeltrid |
|- ( ph -> Z e. P ) |
| 24 |
15 14
|
eqeltrd |
|- ( ph -> ( ( S ` A ) ` B ) e. P ) |
| 25 |
|
eqid |
|- ( S ` A ) = ( S ` A ) |
| 26 |
1 2 3 4 5 6 12 25 13
|
mircgr |
|- ( ph -> ( A .- ( ( S ` A ) ` B ) ) = ( A .- B ) ) |
| 27 |
1 2 3 4 5 6 11 7 12 24 12 13 26
|
mircgrs |
|- ( ph -> ( ( M ` A ) .- ( M ` ( ( S ` A ) ` B ) ) ) = ( ( M ` A ) .- ( M ` B ) ) ) |
| 28 |
8
|
a1i |
|- ( ph -> X = ( M ` A ) ) |
| 29 |
15
|
fveq2d |
|- ( ph -> ( M ` ( ( S ` A ) ` B ) ) = ( M ` C ) ) |
| 30 |
10 29
|
eqtr4id |
|- ( ph -> Z = ( M ` ( ( S ` A ) ` B ) ) ) |
| 31 |
28 30
|
oveq12d |
|- ( ph -> ( X .- Z ) = ( ( M ` A ) .- ( M ` ( ( S ` A ) ` B ) ) ) ) |
| 32 |
8 9
|
oveq12i |
|- ( X .- Y ) = ( ( M ` A ) .- ( M ` B ) ) |
| 33 |
32
|
a1i |
|- ( ph -> ( X .- Y ) = ( ( M ` A ) .- ( M ` B ) ) ) |
| 34 |
27 31 33
|
3eqtr4d |
|- ( ph -> ( X .- Z ) = ( X .- Y ) ) |
| 35 |
1 2 3 4 5 6 12 25 13
|
mirbtwn |
|- ( ph -> A e. ( ( ( S ` A ) ` B ) I B ) ) |
| 36 |
15
|
oveq1d |
|- ( ph -> ( ( ( S ` A ) ` B ) I B ) = ( C I B ) ) |
| 37 |
35 36
|
eleqtrd |
|- ( ph -> A e. ( C I B ) ) |
| 38 |
1 2 3 4 5 6 11 7 14 12 13 37
|
mirbtwni |
|- ( ph -> ( M ` A ) e. ( ( M ` C ) I ( M ` B ) ) ) |
| 39 |
10 9
|
oveq12i |
|- ( Z I Y ) = ( ( M ` C ) I ( M ` B ) ) |
| 40 |
38 8 39
|
3eltr4g |
|- ( ph -> X e. ( Z I Y ) ) |
| 41 |
1 2 3 4 5 6 18 19 21 23 34 40
|
ismir |
|- ( ph -> Z = ( ( S ` X ) ` Y ) ) |
| 42 |
41
|
eqcomd |
|- ( ph -> ( ( S ` X ) ` Y ) = Z ) |