Metamath Proof Explorer


Theorem mirauto

Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirauto.m M=ST
mirauto.x X=MA
mirauto.y Y=MB
mirauto.z Z=MC
mirauto.0 φTP
mirauto.1 φAP
mirauto.2 φBP
mirauto.3 φCP
mirauto.4 φSAB=C
Assertion mirauto φSXY=Z

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirauto.m M=ST
8 mirauto.x X=MA
9 mirauto.y Y=MB
10 mirauto.z Z=MC
11 mirauto.0 φTP
12 mirauto.1 φAP
13 mirauto.2 φBP
14 mirauto.3 φCP
15 mirauto.4 φSAB=C
16 1 2 3 4 5 6 11 7 mirf φM:PP
17 16 12 ffvelcdmd φMAP
18 8 17 eqeltrid φXP
19 eqid SX=SX
20 16 13 ffvelcdmd φMBP
21 9 20 eqeltrid φYP
22 16 14 ffvelcdmd φMCP
23 10 22 eqeltrid φZP
24 15 14 eqeltrd φSABP
25 eqid SA=SA
26 1 2 3 4 5 6 12 25 13 mircgr φA-˙SAB=A-˙B
27 1 2 3 4 5 6 11 7 12 24 12 13 26 mircgrs φMA-˙MSAB=MA-˙MB
28 8 a1i φX=MA
29 15 fveq2d φMSAB=MC
30 10 29 eqtr4id φZ=MSAB
31 28 30 oveq12d φX-˙Z=MA-˙MSAB
32 8 9 oveq12i X-˙Y=MA-˙MB
33 32 a1i φX-˙Y=MA-˙MB
34 27 31 33 3eqtr4d φX-˙Z=X-˙Y
35 1 2 3 4 5 6 12 25 13 mirbtwn φASABIB
36 15 oveq1d φSABIB=CIB
37 35 36 eleqtrd φACIB
38 1 2 3 4 5 6 11 7 14 12 13 37 mirbtwni φMAMCIMB
39 10 9 oveq12i ZIY=MCIMB
40 38 8 39 3eltr4g φXZIY
41 1 2 3 4 5 6 18 19 21 23 34 40 ismir φZ=SXY
42 41 eqcomd φSXY=Z