Metamath Proof Explorer


Theorem mircgrs

Description: Point inversion preserves congruence. Theorem 7.16 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
miriso.1 φXP
miriso.2 φYP
mircgrs.z φZP
mircgrs.t φTP
mircgrs.e φX-˙Y=Z-˙T
Assertion mircgrs φMX-˙MY=MZ-˙MT

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 miriso.1 φXP
10 miriso.2 φYP
11 mircgrs.z φZP
12 mircgrs.t φTP
13 mircgrs.e φX-˙Y=Z-˙T
14 1 2 3 4 5 6 7 8 9 10 miriso φMX-˙MY=X-˙Y
15 1 2 3 4 5 6 7 8 11 12 miriso φMZ-˙MT=Z-˙T
16 13 14 15 3eqtr4d φMX-˙MY=MZ-˙MT