Metamath Proof Explorer


Theorem mirmir2

Description: Point inversion of a point inversion through another point. (Contributed by Thierry Arnoux, 3-Nov-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
miriso.1 φXP
miriso.2 φYP
Assertion mirmir2 φMSYX=SMYMX

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 miriso.1 φXP
10 miriso.2 φYP
11 1 2 3 4 5 6 7 8 10 mircl φMYP
12 eqid SMY=SMY
13 1 2 3 4 5 6 7 8 9 mircl φMXP
14 eqid SY=SY
15 1 2 3 4 5 6 10 14 9 mircl φSYXP
16 1 2 3 4 5 6 7 8 15 mircl φMSYXP
17 1 2 3 4 5 6 10 14 9 mircgr φY-˙SYX=Y-˙X
18 1 2 3 4 5 6 7 8 10 15 10 9 17 mircgrs φMY-˙MSYX=MY-˙MX
19 1 2 3 4 5 6 10 14 9 mirbtwn φYSYXIX
20 1 2 3 4 5 6 7 8 15 10 9 19 mirbtwni φMYMSYXIMX
21 1 2 3 4 5 6 11 12 13 16 18 20 ismir φMSYX=SMYMX