| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
|
miriso.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 10 |
|
miriso.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 11 |
1 2 3 4 5 6 7 8 10
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( 𝑆 ‘ ( 𝑀 ‘ 𝑌 ) ) = ( 𝑆 ‘ ( 𝑀 ‘ 𝑌 ) ) |
| 13 |
1 2 3 4 5 6 7 8 9
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ 𝑃 ) |
| 14 |
|
eqid |
⊢ ( 𝑆 ‘ 𝑌 ) = ( 𝑆 ‘ 𝑌 ) |
| 15 |
1 2 3 4 5 6 10 14 9
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ∈ 𝑃 ) |
| 16 |
1 2 3 4 5 6 7 8 15
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) ∈ 𝑃 ) |
| 17 |
1 2 3 4 5 6 10 14 9
|
mircgr |
⊢ ( 𝜑 → ( 𝑌 − ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( 𝑌 − 𝑋 ) ) |
| 18 |
1 2 3 4 5 6 7 8 10 15 10 9 17
|
mircgrs |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑌 ) − ( 𝑀 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) ) = ( ( 𝑀 ‘ 𝑌 ) − ( 𝑀 ‘ 𝑋 ) ) ) |
| 19 |
1 2 3 4 5 6 10 14 9
|
mirbtwn |
⊢ ( 𝜑 → 𝑌 ∈ ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) 𝐼 𝑋 ) ) |
| 20 |
1 2 3 4 5 6 7 8 15 10 9 19
|
mirbtwni |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ 𝑋 ) ) ) |
| 21 |
1 2 3 4 5 6 11 12 13 16 18 20
|
ismir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ ( 𝑀 ‘ 𝑌 ) ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) |