| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
|
miriso.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 10 |
|
miriso.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 11 |
|
mirbtwni.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 12 |
|
mirbtwni.b |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
| 13 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
| 14 |
1 2 3 4 5 6 7 8
|
mirf |
⊢ ( 𝜑 → 𝑀 : 𝑃 ⟶ 𝑃 ) |
| 15 |
14 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ 𝑃 ) |
| 16 |
14 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ 𝑃 ) |
| 17 |
14 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑍 ) ∈ 𝑃 ) |
| 18 |
1 2 3 4 5 6 7 8 9 10
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) − ( 𝑀 ‘ 𝑌 ) ) = ( 𝑋 − 𝑌 ) ) |
| 19 |
18
|
eqcomd |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( ( 𝑀 ‘ 𝑋 ) − ( 𝑀 ‘ 𝑌 ) ) ) |
| 20 |
1 2 3 4 5 6 7 8 10 11
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑌 ) − ( 𝑀 ‘ 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
| 21 |
20
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( ( 𝑀 ‘ 𝑌 ) − ( 𝑀 ‘ 𝑍 ) ) ) |
| 22 |
1 2 3 4 5 6 7 8 11 9
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑍 ) − ( 𝑀 ‘ 𝑋 ) ) = ( 𝑍 − 𝑋 ) ) |
| 23 |
22
|
eqcomd |
⊢ ( 𝜑 → ( 𝑍 − 𝑋 ) = ( ( 𝑀 ‘ 𝑍 ) − ( 𝑀 ‘ 𝑋 ) ) ) |
| 24 |
1 2 13 6 9 10 11 15 16 17 19 21 23
|
trgcgr |
⊢ ( 𝜑 → 〈“ 𝑋 𝑌 𝑍 ”〉 ( cgrG ‘ 𝐺 ) 〈“ ( 𝑀 ‘ 𝑋 ) ( 𝑀 ‘ 𝑌 ) ( 𝑀 ‘ 𝑍 ) ”〉 ) |
| 25 |
1 2 3 13 6 9 10 11 15 16 17 24 12
|
tgbtwnxfr |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) |