Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
9 |
|
miriso.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
10 |
|
miriso.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
11 |
|
mirbtwni.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
12 |
|
mirbtwni.b |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
13 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
14 |
1 2 3 4 5 6 7 8
|
mirf |
⊢ ( 𝜑 → 𝑀 : 𝑃 ⟶ 𝑃 ) |
15 |
14 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ 𝑃 ) |
16 |
14 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ 𝑃 ) |
17 |
14 11
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑍 ) ∈ 𝑃 ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) − ( 𝑀 ‘ 𝑌 ) ) = ( 𝑋 − 𝑌 ) ) |
19 |
18
|
eqcomd |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( ( 𝑀 ‘ 𝑋 ) − ( 𝑀 ‘ 𝑌 ) ) ) |
20 |
1 2 3 4 5 6 7 8 10 11
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑌 ) − ( 𝑀 ‘ 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( ( 𝑀 ‘ 𝑌 ) − ( 𝑀 ‘ 𝑍 ) ) ) |
22 |
1 2 3 4 5 6 7 8 11 9
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑍 ) − ( 𝑀 ‘ 𝑋 ) ) = ( 𝑍 − 𝑋 ) ) |
23 |
22
|
eqcomd |
⊢ ( 𝜑 → ( 𝑍 − 𝑋 ) = ( ( 𝑀 ‘ 𝑍 ) − ( 𝑀 ‘ 𝑋 ) ) ) |
24 |
1 2 13 6 9 10 11 15 16 17 19 21 23
|
trgcgr |
⊢ ( 𝜑 → 〈“ 𝑋 𝑌 𝑍 ”〉 ( cgrG ‘ 𝐺 ) 〈“ ( 𝑀 ‘ 𝑋 ) ( 𝑀 ‘ 𝑌 ) ( 𝑀 ‘ 𝑍 ) ”〉 ) |
25 |
1 2 3 13 6 9 10 11 15 16 17 24 12
|
tgbtwnxfr |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) |