Metamath Proof Explorer


Theorem mirbtwni

Description: Point inversion preserves betweenness, first half of Theorem 7.15 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirval.a ( 𝜑𝐴𝑃 )
mirfv.m 𝑀 = ( 𝑆𝐴 )
miriso.1 ( 𝜑𝑋𝑃 )
miriso.2 ( 𝜑𝑌𝑃 )
mirbtwni.z ( 𝜑𝑍𝑃 )
mirbtwni.b ( 𝜑𝑌 ∈ ( 𝑋 𝐼 𝑍 ) )
Assertion mirbtwni ( 𝜑 → ( 𝑀𝑌 ) ∈ ( ( 𝑀𝑋 ) 𝐼 ( 𝑀𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirval.a ( 𝜑𝐴𝑃 )
8 mirfv.m 𝑀 = ( 𝑆𝐴 )
9 miriso.1 ( 𝜑𝑋𝑃 )
10 miriso.2 ( 𝜑𝑌𝑃 )
11 mirbtwni.z ( 𝜑𝑍𝑃 )
12 mirbtwni.b ( 𝜑𝑌 ∈ ( 𝑋 𝐼 𝑍 ) )
13 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
14 1 2 3 4 5 6 7 8 mirf ( 𝜑𝑀 : 𝑃𝑃 )
15 14 9 ffvelrnd ( 𝜑 → ( 𝑀𝑋 ) ∈ 𝑃 )
16 14 10 ffvelrnd ( 𝜑 → ( 𝑀𝑌 ) ∈ 𝑃 )
17 14 11 ffvelrnd ( 𝜑 → ( 𝑀𝑍 ) ∈ 𝑃 )
18 1 2 3 4 5 6 7 8 9 10 miriso ( 𝜑 → ( ( 𝑀𝑋 ) ( 𝑀𝑌 ) ) = ( 𝑋 𝑌 ) )
19 18 eqcomd ( 𝜑 → ( 𝑋 𝑌 ) = ( ( 𝑀𝑋 ) ( 𝑀𝑌 ) ) )
20 1 2 3 4 5 6 7 8 10 11 miriso ( 𝜑 → ( ( 𝑀𝑌 ) ( 𝑀𝑍 ) ) = ( 𝑌 𝑍 ) )
21 20 eqcomd ( 𝜑 → ( 𝑌 𝑍 ) = ( ( 𝑀𝑌 ) ( 𝑀𝑍 ) ) )
22 1 2 3 4 5 6 7 8 11 9 miriso ( 𝜑 → ( ( 𝑀𝑍 ) ( 𝑀𝑋 ) ) = ( 𝑍 𝑋 ) )
23 22 eqcomd ( 𝜑 → ( 𝑍 𝑋 ) = ( ( 𝑀𝑍 ) ( 𝑀𝑋 ) ) )
24 1 2 13 6 9 10 11 15 16 17 19 21 23 trgcgr ( 𝜑 → ⟨“ 𝑋 𝑌 𝑍 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ ( 𝑀𝑋 ) ( 𝑀𝑌 ) ( 𝑀𝑍 ) ”⟩ )
25 1 2 3 13 6 9 10 11 15 16 17 24 12 tgbtwnxfr ( 𝜑 → ( 𝑀𝑌 ) ∈ ( ( 𝑀𝑋 ) 𝐼 ( 𝑀𝑍 ) ) )