| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
|
miriso.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 10 |
|
miriso.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 11 |
|
mirbtwnb.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐺 ∈ TarskiG ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐴 ∈ 𝑃 ) |
| 14 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑋 ∈ 𝑃 ) |
| 15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ 𝑃 ) |
| 16 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑍 ∈ 𝑃 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
| 18 |
1 2 3 4 5 12 13 8 14 15 16 17
|
mirbtwni |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝐺 ∈ TarskiG ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 21 |
1 2 3 4 5 19 20 8
|
mirf |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑀 : 𝑃 ⟶ 𝑃 ) |
| 22 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑋 ∈ 𝑃 ) |
| 23 |
21 22
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝑃 ) |
| 24 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑌 ∈ 𝑃 ) |
| 25 |
21 24
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑌 ) ∈ 𝑃 ) |
| 26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑍 ∈ 𝑃 ) |
| 27 |
21 26
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑍 ) ∈ 𝑃 ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) |
| 29 |
1 2 3 4 5 19 20 8 23 25 27 28
|
mirbtwni |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) ) |
| 30 |
1 2 3 4 5 6 7 8 10
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) = 𝑌 ) |
| 31 |
1 2 3 4 5 6 7 8 9
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |
| 32 |
1 2 3 4 5 6 7 8 11
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) = 𝑍 ) |
| 33 |
31 32
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) = ( 𝑋 𝐼 𝑍 ) ) |
| 34 |
30 33
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
| 36 |
29 35
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
| 37 |
18 36
|
impbida |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ↔ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) ) |