| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
|
miriso.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 10 |
|
miriso.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 11 |
|
mircgrs.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 12 |
|
mircgrs.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
| 13 |
|
mircgrs.e |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑍 − 𝑇 ) ) |
| 14 |
1 2 3 4 5 6 7 8 9 10
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) − ( 𝑀 ‘ 𝑌 ) ) = ( 𝑋 − 𝑌 ) ) |
| 15 |
1 2 3 4 5 6 7 8 11 12
|
miriso |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑍 ) − ( 𝑀 ‘ 𝑇 ) ) = ( 𝑍 − 𝑇 ) ) |
| 16 |
13 14 15
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) − ( 𝑀 ‘ 𝑌 ) ) = ( ( 𝑀 ‘ 𝑍 ) − ( 𝑀 ‘ 𝑇 ) ) ) |