Description: Point inversion preserves congruence. Theorem 7.16 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mirval.p | |- P = ( Base ` G ) | |
| mirval.d | |- .- = ( dist ` G ) | ||
| mirval.i | |- I = ( Itv ` G ) | ||
| mirval.l | |- L = ( LineG ` G ) | ||
| mirval.s | |- S = ( pInvG ` G ) | ||
| mirval.g | |- ( ph -> G e. TarskiG ) | ||
| mirval.a | |- ( ph -> A e. P ) | ||
| mirfv.m | |- M = ( S ` A ) | ||
| miriso.1 | |- ( ph -> X e. P ) | ||
| miriso.2 | |- ( ph -> Y e. P ) | ||
| mircgrs.z | |- ( ph -> Z e. P ) | ||
| mircgrs.t | |- ( ph -> T e. P ) | ||
| mircgrs.e | |- ( ph -> ( X .- Y ) = ( Z .- T ) ) | ||
| Assertion | mircgrs | |- ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( ( M ` Z ) .- ( M ` T ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mirval.p | |- P = ( Base ` G ) | |
| 2 | mirval.d | |- .- = ( dist ` G ) | |
| 3 | mirval.i | |- I = ( Itv ` G ) | |
| 4 | mirval.l | |- L = ( LineG ` G ) | |
| 5 | mirval.s | |- S = ( pInvG ` G ) | |
| 6 | mirval.g | |- ( ph -> G e. TarskiG ) | |
| 7 | mirval.a | |- ( ph -> A e. P ) | |
| 8 | mirfv.m | |- M = ( S ` A ) | |
| 9 | miriso.1 | |- ( ph -> X e. P ) | |
| 10 | miriso.2 | |- ( ph -> Y e. P ) | |
| 11 | mircgrs.z | |- ( ph -> Z e. P ) | |
| 12 | mircgrs.t | |- ( ph -> T e. P ) | |
| 13 | mircgrs.e | |- ( ph -> ( X .- Y ) = ( Z .- T ) ) | |
| 14 | 1 2 3 4 5 6 7 8 9 10 | miriso | |- ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( X .- Y ) ) | 
| 15 | 1 2 3 4 5 6 7 8 11 12 | miriso | |- ( ph -> ( ( M ` Z ) .- ( M ` T ) ) = ( Z .- T ) ) | 
| 16 | 13 14 15 | 3eqtr4d | |- ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( ( M ` Z ) .- ( M ` T ) ) ) |