Metamath Proof Explorer


Theorem mircgrs

Description: Point inversion preserves congruence. Theorem 7.16 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
miriso.1
|- ( ph -> X e. P )
miriso.2
|- ( ph -> Y e. P )
mircgrs.z
|- ( ph -> Z e. P )
mircgrs.t
|- ( ph -> T e. P )
mircgrs.e
|- ( ph -> ( X .- Y ) = ( Z .- T ) )
Assertion mircgrs
|- ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( ( M ` Z ) .- ( M ` T ) ) )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 miriso.1
 |-  ( ph -> X e. P )
10 miriso.2
 |-  ( ph -> Y e. P )
11 mircgrs.z
 |-  ( ph -> Z e. P )
12 mircgrs.t
 |-  ( ph -> T e. P )
13 mircgrs.e
 |-  ( ph -> ( X .- Y ) = ( Z .- T ) )
14 1 2 3 4 5 6 7 8 9 10 miriso
 |-  ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( X .- Y ) )
15 1 2 3 4 5 6 7 8 11 12 miriso
 |-  ( ph -> ( ( M ` Z ) .- ( M ` T ) ) = ( Z .- T ) )
16 13 14 15 3eqtr4d
 |-  ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( ( M ` Z ) .- ( M ` T ) ) )