| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
|
miriso.1 |
|- ( ph -> X e. P ) |
| 10 |
|
miriso.2 |
|- ( ph -> Y e. P ) |
| 11 |
1 2 3 4 5 6 7 8 10
|
mircl |
|- ( ph -> ( M ` Y ) e. P ) |
| 12 |
|
eqid |
|- ( S ` ( M ` Y ) ) = ( S ` ( M ` Y ) ) |
| 13 |
1 2 3 4 5 6 7 8 9
|
mircl |
|- ( ph -> ( M ` X ) e. P ) |
| 14 |
|
eqid |
|- ( S ` Y ) = ( S ` Y ) |
| 15 |
1 2 3 4 5 6 10 14 9
|
mircl |
|- ( ph -> ( ( S ` Y ) ` X ) e. P ) |
| 16 |
1 2 3 4 5 6 7 8 15
|
mircl |
|- ( ph -> ( M ` ( ( S ` Y ) ` X ) ) e. P ) |
| 17 |
1 2 3 4 5 6 10 14 9
|
mircgr |
|- ( ph -> ( Y .- ( ( S ` Y ) ` X ) ) = ( Y .- X ) ) |
| 18 |
1 2 3 4 5 6 7 8 10 15 10 9 17
|
mircgrs |
|- ( ph -> ( ( M ` Y ) .- ( M ` ( ( S ` Y ) ` X ) ) ) = ( ( M ` Y ) .- ( M ` X ) ) ) |
| 19 |
1 2 3 4 5 6 10 14 9
|
mirbtwn |
|- ( ph -> Y e. ( ( ( S ` Y ) ` X ) I X ) ) |
| 20 |
1 2 3 4 5 6 7 8 15 10 9 19
|
mirbtwni |
|- ( ph -> ( M ` Y ) e. ( ( M ` ( ( S ` Y ) ` X ) ) I ( M ` X ) ) ) |
| 21 |
1 2 3 4 5 6 11 12 13 16 18 20
|
ismir |
|- ( ph -> ( M ` ( ( S ` Y ) ` X ) ) = ( ( S ` ( M ` Y ) ) ` ( M ` X ) ) ) |