Metamath Proof Explorer


Theorem mirbtwni

Description: Point inversion preserves betweenness, first half of Theorem 7.15 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
miriso.1
|- ( ph -> X e. P )
miriso.2
|- ( ph -> Y e. P )
mirbtwni.z
|- ( ph -> Z e. P )
mirbtwni.b
|- ( ph -> Y e. ( X I Z ) )
Assertion mirbtwni
|- ( ph -> ( M ` Y ) e. ( ( M ` X ) I ( M ` Z ) ) )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 miriso.1
 |-  ( ph -> X e. P )
10 miriso.2
 |-  ( ph -> Y e. P )
11 mirbtwni.z
 |-  ( ph -> Z e. P )
12 mirbtwni.b
 |-  ( ph -> Y e. ( X I Z ) )
13 eqid
 |-  ( cgrG ` G ) = ( cgrG ` G )
14 1 2 3 4 5 6 7 8 mirf
 |-  ( ph -> M : P --> P )
15 14 9 ffvelrnd
 |-  ( ph -> ( M ` X ) e. P )
16 14 10 ffvelrnd
 |-  ( ph -> ( M ` Y ) e. P )
17 14 11 ffvelrnd
 |-  ( ph -> ( M ` Z ) e. P )
18 1 2 3 4 5 6 7 8 9 10 miriso
 |-  ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( X .- Y ) )
19 18 eqcomd
 |-  ( ph -> ( X .- Y ) = ( ( M ` X ) .- ( M ` Y ) ) )
20 1 2 3 4 5 6 7 8 10 11 miriso
 |-  ( ph -> ( ( M ` Y ) .- ( M ` Z ) ) = ( Y .- Z ) )
21 20 eqcomd
 |-  ( ph -> ( Y .- Z ) = ( ( M ` Y ) .- ( M ` Z ) ) )
22 1 2 3 4 5 6 7 8 11 9 miriso
 |-  ( ph -> ( ( M ` Z ) .- ( M ` X ) ) = ( Z .- X ) )
23 22 eqcomd
 |-  ( ph -> ( Z .- X ) = ( ( M ` Z ) .- ( M ` X ) ) )
24 1 2 13 6 9 10 11 15 16 17 19 21 23 trgcgr
 |-  ( ph -> <" X Y Z "> ( cgrG ` G ) <" ( M ` X ) ( M ` Y ) ( M ` Z ) "> )
25 1 2 3 13 6 9 10 11 15 16 17 24 12 tgbtwnxfr
 |-  ( ph -> ( M ` Y ) e. ( ( M ` X ) I ( M ` Z ) ) )