Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
mirval.a |
|- ( ph -> A e. P ) |
8 |
|
mirfv.m |
|- M = ( S ` A ) |
9 |
|
miriso.1 |
|- ( ph -> X e. P ) |
10 |
|
miriso.2 |
|- ( ph -> Y e. P ) |
11 |
|
mirbtwni.z |
|- ( ph -> Z e. P ) |
12 |
|
mirbtwni.b |
|- ( ph -> Y e. ( X I Z ) ) |
13 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
14 |
1 2 3 4 5 6 7 8
|
mirf |
|- ( ph -> M : P --> P ) |
15 |
14 9
|
ffvelrnd |
|- ( ph -> ( M ` X ) e. P ) |
16 |
14 10
|
ffvelrnd |
|- ( ph -> ( M ` Y ) e. P ) |
17 |
14 11
|
ffvelrnd |
|- ( ph -> ( M ` Z ) e. P ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
miriso |
|- ( ph -> ( ( M ` X ) .- ( M ` Y ) ) = ( X .- Y ) ) |
19 |
18
|
eqcomd |
|- ( ph -> ( X .- Y ) = ( ( M ` X ) .- ( M ` Y ) ) ) |
20 |
1 2 3 4 5 6 7 8 10 11
|
miriso |
|- ( ph -> ( ( M ` Y ) .- ( M ` Z ) ) = ( Y .- Z ) ) |
21 |
20
|
eqcomd |
|- ( ph -> ( Y .- Z ) = ( ( M ` Y ) .- ( M ` Z ) ) ) |
22 |
1 2 3 4 5 6 7 8 11 9
|
miriso |
|- ( ph -> ( ( M ` Z ) .- ( M ` X ) ) = ( Z .- X ) ) |
23 |
22
|
eqcomd |
|- ( ph -> ( Z .- X ) = ( ( M ` Z ) .- ( M ` X ) ) ) |
24 |
1 2 13 6 9 10 11 15 16 17 19 21 23
|
trgcgr |
|- ( ph -> <" X Y Z "> ( cgrG ` G ) <" ( M ` X ) ( M ` Y ) ( M ` Z ) "> ) |
25 |
1 2 3 13 6 9 10 11 15 16 17 24 12
|
tgbtwnxfr |
|- ( ph -> ( M ` Y ) e. ( ( M ` X ) I ( M ` Z ) ) ) |