Metamath Proof Explorer


Theorem mirauto

Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirauto.m 𝑀 = ( 𝑆𝑇 )
mirauto.x 𝑋 = ( 𝑀𝐴 )
mirauto.y 𝑌 = ( 𝑀𝐵 )
mirauto.z 𝑍 = ( 𝑀𝐶 )
mirauto.0 ( 𝜑𝑇𝑃 )
mirauto.1 ( 𝜑𝐴𝑃 )
mirauto.2 ( 𝜑𝐵𝑃 )
mirauto.3 ( 𝜑𝐶𝑃 )
mirauto.4 ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝐵 ) = 𝐶 )
Assertion mirauto ( 𝜑 → ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 𝑍 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirauto.m 𝑀 = ( 𝑆𝑇 )
8 mirauto.x 𝑋 = ( 𝑀𝐴 )
9 mirauto.y 𝑌 = ( 𝑀𝐵 )
10 mirauto.z 𝑍 = ( 𝑀𝐶 )
11 mirauto.0 ( 𝜑𝑇𝑃 )
12 mirauto.1 ( 𝜑𝐴𝑃 )
13 mirauto.2 ( 𝜑𝐵𝑃 )
14 mirauto.3 ( 𝜑𝐶𝑃 )
15 mirauto.4 ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝐵 ) = 𝐶 )
16 1 2 3 4 5 6 11 7 mirf ( 𝜑𝑀 : 𝑃𝑃 )
17 16 12 ffvelrnd ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑃 )
18 8 17 eqeltrid ( 𝜑𝑋𝑃 )
19 eqid ( 𝑆𝑋 ) = ( 𝑆𝑋 )
20 16 13 ffvelrnd ( 𝜑 → ( 𝑀𝐵 ) ∈ 𝑃 )
21 9 20 eqeltrid ( 𝜑𝑌𝑃 )
22 16 14 ffvelrnd ( 𝜑 → ( 𝑀𝐶 ) ∈ 𝑃 )
23 10 22 eqeltrid ( 𝜑𝑍𝑃 )
24 15 14 eqeltrd ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝐵 ) ∈ 𝑃 )
25 eqid ( 𝑆𝐴 ) = ( 𝑆𝐴 )
26 1 2 3 4 5 6 12 25 13 mircgr ( 𝜑 → ( 𝐴 ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) = ( 𝐴 𝐵 ) )
27 1 2 3 4 5 6 11 7 12 24 12 13 26 mircgrs ( 𝜑 → ( ( 𝑀𝐴 ) ( 𝑀 ‘ ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) ) = ( ( 𝑀𝐴 ) ( 𝑀𝐵 ) ) )
28 8 a1i ( 𝜑𝑋 = ( 𝑀𝐴 ) )
29 15 fveq2d ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) = ( 𝑀𝐶 ) )
30 10 29 eqtr4id ( 𝜑𝑍 = ( 𝑀 ‘ ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) )
31 28 30 oveq12d ( 𝜑 → ( 𝑋 𝑍 ) = ( ( 𝑀𝐴 ) ( 𝑀 ‘ ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) ) )
32 8 9 oveq12i ( 𝑋 𝑌 ) = ( ( 𝑀𝐴 ) ( 𝑀𝐵 ) )
33 32 a1i ( 𝜑 → ( 𝑋 𝑌 ) = ( ( 𝑀𝐴 ) ( 𝑀𝐵 ) ) )
34 27 31 33 3eqtr4d ( 𝜑 → ( 𝑋 𝑍 ) = ( 𝑋 𝑌 ) )
35 1 2 3 4 5 6 12 25 13 mirbtwn ( 𝜑𝐴 ∈ ( ( ( 𝑆𝐴 ) ‘ 𝐵 ) 𝐼 𝐵 ) )
36 15 oveq1d ( 𝜑 → ( ( ( 𝑆𝐴 ) ‘ 𝐵 ) 𝐼 𝐵 ) = ( 𝐶 𝐼 𝐵 ) )
37 35 36 eleqtrd ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) )
38 1 2 3 4 5 6 11 7 14 12 13 37 mirbtwni ( 𝜑 → ( 𝑀𝐴 ) ∈ ( ( 𝑀𝐶 ) 𝐼 ( 𝑀𝐵 ) ) )
39 10 9 oveq12i ( 𝑍 𝐼 𝑌 ) = ( ( 𝑀𝐶 ) 𝐼 ( 𝑀𝐵 ) )
40 38 8 39 3eltr4g ( 𝜑𝑋 ∈ ( 𝑍 𝐼 𝑌 ) )
41 1 2 3 4 5 6 18 19 21 23 34 40 ismir ( 𝜑𝑍 = ( ( 𝑆𝑋 ) ‘ 𝑌 ) )
42 41 eqcomd ( 𝜑 → ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 𝑍 )