| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
miduniq.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
miduniq.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
miduniq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 10 |
|
miduniq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 11 |
|
miduniq.e |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) = 𝑌 ) |
| 12 |
|
miduniq.f |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) = 𝑌 ) |
| 13 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) |
| 15 |
1 2 3 4 5 6 7 14 8
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝑃 ) |
| 16 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
| 17 |
1 2 3 4 5 6 8 16 9
|
mirbtwn |
⊢ ( 𝜑 → 𝐵 ∈ ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) 𝐼 𝑋 ) ) |
| 18 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) 𝐼 𝑋 ) = ( 𝑌 𝐼 𝑋 ) ) |
| 19 |
17 18
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑌 𝐼 𝑋 ) ) |
| 20 |
1 2 3 6 10 8 9 19
|
tgbtwncom |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 21 |
1 2 3 4 5 6 7 14 10 8
|
miriso |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑌 − 𝐵 ) ) |
| 22 |
1 2 3 4 5 6 7 14 9 11
|
mircom |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑌 ) = 𝑋 ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑌 ) − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 24 |
1 2 3 4 5 6 8 16 9
|
mircgr |
⊢ ( 𝜑 → ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = ( 𝐵 − 𝑋 ) ) |
| 25 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = ( 𝐵 − 𝑌 ) ) |
| 26 |
24 25
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) = ( 𝐵 − 𝑌 ) ) |
| 27 |
26
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 − 𝑌 ) = ( 𝐵 − 𝑋 ) ) |
| 28 |
1 2 3 6 8 10 8 9 27
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑌 − 𝐵 ) = ( 𝑋 − 𝐵 ) ) |
| 29 |
21 23 28
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑋 − 𝐵 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 30 |
1 2 3 4 5 6 7 14 9 8
|
miriso |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑋 − 𝐵 ) ) |
| 31 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑌 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 32 |
1 2 3 6 8 9 8 10 26
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑋 − 𝐵 ) = ( 𝑌 − 𝐵 ) ) |
| 33 |
30 31 32
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑌 − 𝐵 ) = ( 𝑌 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 34 |
1 4 3 6 9 10 8 13 15 7 2 20 29 33
|
tgidinside |
⊢ ( 𝜑 → 𝐵 = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) |
| 35 |
34
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) = 𝐵 ) |
| 36 |
1 2 3 4 5 6 7 14 8
|
mirinv |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 37 |
35 36
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |