Metamath Proof Explorer


Theorem miduniq

Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
miduniq.a ( 𝜑𝐴𝑃 )
miduniq.b ( 𝜑𝐵𝑃 )
miduniq.x ( 𝜑𝑋𝑃 )
miduniq.y ( 𝜑𝑌𝑃 )
miduniq.e ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝑋 ) = 𝑌 )
miduniq.f ( 𝜑 → ( ( 𝑆𝐵 ) ‘ 𝑋 ) = 𝑌 )
Assertion miduniq ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 miduniq.a ( 𝜑𝐴𝑃 )
8 miduniq.b ( 𝜑𝐵𝑃 )
9 miduniq.x ( 𝜑𝑋𝑃 )
10 miduniq.y ( 𝜑𝑌𝑃 )
11 miduniq.e ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝑋 ) = 𝑌 )
12 miduniq.f ( 𝜑 → ( ( 𝑆𝐵 ) ‘ 𝑋 ) = 𝑌 )
13 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
14 eqid ( 𝑆𝐴 ) = ( 𝑆𝐴 )
15 1 2 3 4 5 6 7 14 8 mircl ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝐵 ) ∈ 𝑃 )
16 eqid ( 𝑆𝐵 ) = ( 𝑆𝐵 )
17 1 2 3 4 5 6 8 16 9 mirbtwn ( 𝜑𝐵 ∈ ( ( ( 𝑆𝐵 ) ‘ 𝑋 ) 𝐼 𝑋 ) )
18 12 oveq1d ( 𝜑 → ( ( ( 𝑆𝐵 ) ‘ 𝑋 ) 𝐼 𝑋 ) = ( 𝑌 𝐼 𝑋 ) )
19 17 18 eleqtrd ( 𝜑𝐵 ∈ ( 𝑌 𝐼 𝑋 ) )
20 1 2 3 6 10 8 9 19 tgbtwncom ( 𝜑𝐵 ∈ ( 𝑋 𝐼 𝑌 ) )
21 1 2 3 4 5 6 7 14 10 8 miriso ( 𝜑 → ( ( ( 𝑆𝐴 ) ‘ 𝑌 ) ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) = ( 𝑌 𝐵 ) )
22 1 2 3 4 5 6 7 14 9 11 mircom ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝑌 ) = 𝑋 )
23 22 oveq1d ( 𝜑 → ( ( ( 𝑆𝐴 ) ‘ 𝑌 ) ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) = ( 𝑋 ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) )
24 1 2 3 4 5 6 8 16 9 mircgr ( 𝜑 → ( 𝐵 ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) = ( 𝐵 𝑋 ) )
25 12 oveq2d ( 𝜑 → ( 𝐵 ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) = ( 𝐵 𝑌 ) )
26 24 25 eqtr3d ( 𝜑 → ( 𝐵 𝑋 ) = ( 𝐵 𝑌 ) )
27 26 eqcomd ( 𝜑 → ( 𝐵 𝑌 ) = ( 𝐵 𝑋 ) )
28 1 2 3 6 8 10 8 9 27 tgcgrcomlr ( 𝜑 → ( 𝑌 𝐵 ) = ( 𝑋 𝐵 ) )
29 21 23 28 3eqtr3rd ( 𝜑 → ( 𝑋 𝐵 ) = ( 𝑋 ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) )
30 1 2 3 4 5 6 7 14 9 8 miriso ( 𝜑 → ( ( ( 𝑆𝐴 ) ‘ 𝑋 ) ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) = ( 𝑋 𝐵 ) )
31 11 oveq1d ( 𝜑 → ( ( ( 𝑆𝐴 ) ‘ 𝑋 ) ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) = ( 𝑌 ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) )
32 1 2 3 6 8 9 8 10 26 tgcgrcomlr ( 𝜑 → ( 𝑋 𝐵 ) = ( 𝑌 𝐵 ) )
33 30 31 32 3eqtr3rd ( 𝜑 → ( 𝑌 𝐵 ) = ( 𝑌 ( ( 𝑆𝐴 ) ‘ 𝐵 ) ) )
34 1 4 3 6 9 10 8 13 15 7 2 20 29 33 tgidinside ( 𝜑𝐵 = ( ( 𝑆𝐴 ) ‘ 𝐵 ) )
35 34 eqcomd ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝐵 ) = 𝐵 )
36 1 2 3 4 5 6 7 14 8 mirinv ( 𝜑 → ( ( ( 𝑆𝐴 ) ‘ 𝐵 ) = 𝐵𝐴 = 𝐵 ) )
37 35 36 mpbid ( 𝜑𝐴 = 𝐵 )