Metamath Proof Explorer


Theorem miduniq

Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
miduniq.a φAP
miduniq.b φBP
miduniq.x φXP
miduniq.y φYP
miduniq.e φSAX=Y
miduniq.f φSBX=Y
Assertion miduniq φA=B

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 miduniq.a φAP
8 miduniq.b φBP
9 miduniq.x φXP
10 miduniq.y φYP
11 miduniq.e φSAX=Y
12 miduniq.f φSBX=Y
13 eqid 𝒢G=𝒢G
14 eqid SA=SA
15 1 2 3 4 5 6 7 14 8 mircl φSABP
16 eqid SB=SB
17 1 2 3 4 5 6 8 16 9 mirbtwn φBSBXIX
18 12 oveq1d φSBXIX=YIX
19 17 18 eleqtrd φBYIX
20 1 2 3 6 10 8 9 19 tgbtwncom φBXIY
21 1 2 3 4 5 6 7 14 10 8 miriso φSAY-˙SAB=Y-˙B
22 1 2 3 4 5 6 7 14 9 11 mircom φSAY=X
23 22 oveq1d φSAY-˙SAB=X-˙SAB
24 1 2 3 4 5 6 8 16 9 mircgr φB-˙SBX=B-˙X
25 12 oveq2d φB-˙SBX=B-˙Y
26 24 25 eqtr3d φB-˙X=B-˙Y
27 26 eqcomd φB-˙Y=B-˙X
28 1 2 3 6 8 10 8 9 27 tgcgrcomlr φY-˙B=X-˙B
29 21 23 28 3eqtr3rd φX-˙B=X-˙SAB
30 1 2 3 4 5 6 7 14 9 8 miriso φSAX-˙SAB=X-˙B
31 11 oveq1d φSAX-˙SAB=Y-˙SAB
32 1 2 3 6 8 9 8 10 26 tgcgrcomlr φX-˙B=Y-˙B
33 30 31 32 3eqtr3rd φY-˙B=Y-˙SAB
34 1 4 3 6 9 10 8 13 15 7 2 20 29 33 tgidinside φB=SAB
35 34 eqcomd φSAB=B
36 1 2 3 4 5 6 7 14 8 mirinv φSAB=BA=B
37 35 36 mpbid φA=B