Metamath Proof Explorer


Theorem miduniq

Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
miduniq.a φ A P
miduniq.b φ B P
miduniq.x φ X P
miduniq.y φ Y P
miduniq.e φ S A X = Y
miduniq.f φ S B X = Y
Assertion miduniq φ A = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 miduniq.a φ A P
8 miduniq.b φ B P
9 miduniq.x φ X P
10 miduniq.y φ Y P
11 miduniq.e φ S A X = Y
12 miduniq.f φ S B X = Y
13 eqid 𝒢 G = 𝒢 G
14 eqid S A = S A
15 1 2 3 4 5 6 7 14 8 mircl φ S A B P
16 eqid S B = S B
17 1 2 3 4 5 6 8 16 9 mirbtwn φ B S B X I X
18 12 oveq1d φ S B X I X = Y I X
19 17 18 eleqtrd φ B Y I X
20 1 2 3 6 10 8 9 19 tgbtwncom φ B X I Y
21 1 2 3 4 5 6 7 14 10 8 miriso φ S A Y - ˙ S A B = Y - ˙ B
22 1 2 3 4 5 6 7 14 9 11 mircom φ S A Y = X
23 22 oveq1d φ S A Y - ˙ S A B = X - ˙ S A B
24 1 2 3 4 5 6 8 16 9 mircgr φ B - ˙ S B X = B - ˙ X
25 12 oveq2d φ B - ˙ S B X = B - ˙ Y
26 24 25 eqtr3d φ B - ˙ X = B - ˙ Y
27 26 eqcomd φ B - ˙ Y = B - ˙ X
28 1 2 3 6 8 10 8 9 27 tgcgrcomlr φ Y - ˙ B = X - ˙ B
29 21 23 28 3eqtr3rd φ X - ˙ B = X - ˙ S A B
30 1 2 3 4 5 6 7 14 9 8 miriso φ S A X - ˙ S A B = X - ˙ B
31 11 oveq1d φ S A X - ˙ S A B = Y - ˙ S A B
32 1 2 3 6 8 9 8 10 26 tgcgrcomlr φ X - ˙ B = Y - ˙ B
33 30 31 32 3eqtr3rd φ Y - ˙ B = Y - ˙ S A B
34 1 4 3 6 9 10 8 13 15 7 2 20 29 33 tgidinside φ B = S A B
35 34 eqcomd φ S A B = B
36 1 2 3 4 5 6 7 14 8 mirinv φ S A B = B A = B
37 35 36 mpbid φ A = B