Metamath Proof Explorer


Theorem tgidinside

Description: Law for finding a point inside a segment. Theorem 4.19 of Schwabhauser p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019)

Ref Expression
Hypotheses tglngval.p P=BaseG
tglngval.l L=Line𝒢G
tglngval.i I=ItvG
tglngval.g φG𝒢Tarski
tglngval.x φXP
tglngval.y φYP
tgcolg.z φZP
lnxfr.r ˙=𝒢G
lnxfr.a φAP
lnxfr.b φBP
lnxfr.d -˙=distG
tgidinside.1 φZXIY
tgidinside.2 φX-˙Z=X-˙A
tgidinside.3 φY-˙Z=Y-˙A
Assertion tgidinside φZ=A

Proof

Step Hyp Ref Expression
1 tglngval.p P=BaseG
2 tglngval.l L=Line𝒢G
3 tglngval.i I=ItvG
4 tglngval.g φG𝒢Tarski
5 tglngval.x φXP
6 tglngval.y φYP
7 tgcolg.z φZP
8 lnxfr.r ˙=𝒢G
9 lnxfr.a φAP
10 lnxfr.b φBP
11 lnxfr.d -˙=distG
12 tgidinside.1 φZXIY
13 tgidinside.2 φX-˙Z=X-˙A
14 tgidinside.3 φY-˙Z=Y-˙A
15 4 adantr φX=YG𝒢Tarski
16 5 adantr φX=YXP
17 7 adantr φX=YZP
18 12 adantr φX=YZXIY
19 simpr φX=YX=Y
20 19 oveq2d φX=YXIX=XIY
21 18 20 eleqtrrd φX=YZXIX
22 1 11 3 15 16 17 21 axtgbtwnid φX=YX=Z
23 9 adantr φX=YAP
24 13 adantr φX=YX-˙Z=X-˙A
25 1 11 3 15 16 17 16 23 24 22 tgcgreq φX=YX=A
26 22 25 eqtr3d φX=YZ=A
27 4 adantr φXYG𝒢Tarski
28 5 adantr φXYXP
29 6 adantr φXYYP
30 7 adantr φXYZP
31 9 adantr φXYAP
32 10 adantr φXYBP
33 simpr φXYXY
34 1 2 3 4 5 7 6 12 btwncolg3 φYXLZX=Z
35 34 adantr φXYYXLZX=Z
36 13 adantr φXYX-˙Z=X-˙A
37 14 adantr φXYY-˙Z=Y-˙A
38 1 2 3 27 28 29 30 8 31 32 11 33 35 36 37 lnid φXYZ=A
39 26 38 pm2.61dane φZ=A