| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglngval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tglngval.l |  |-  L = ( LineG ` G ) | 
						
							| 3 |  | tglngval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tglngval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tglngval.x |  |-  ( ph -> X e. P ) | 
						
							| 6 |  | tglngval.y |  |-  ( ph -> Y e. P ) | 
						
							| 7 |  | tgcolg.z |  |-  ( ph -> Z e. P ) | 
						
							| 8 |  | lnxfr.r |  |-  .~ = ( cgrG ` G ) | 
						
							| 9 |  | lnxfr.a |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | lnxfr.b |  |-  ( ph -> B e. P ) | 
						
							| 11 |  | lnxfr.d |  |-  .- = ( dist ` G ) | 
						
							| 12 |  | tgidinside.1 |  |-  ( ph -> Z e. ( X I Y ) ) | 
						
							| 13 |  | tgidinside.2 |  |-  ( ph -> ( X .- Z ) = ( X .- A ) ) | 
						
							| 14 |  | tgidinside.3 |  |-  ( ph -> ( Y .- Z ) = ( Y .- A ) ) | 
						
							| 15 | 4 | adantr |  |-  ( ( ph /\ X = Y ) -> G e. TarskiG ) | 
						
							| 16 | 5 | adantr |  |-  ( ( ph /\ X = Y ) -> X e. P ) | 
						
							| 17 | 7 | adantr |  |-  ( ( ph /\ X = Y ) -> Z e. P ) | 
						
							| 18 | 12 | adantr |  |-  ( ( ph /\ X = Y ) -> Z e. ( X I Y ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ X = Y ) -> X = Y ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ph /\ X = Y ) -> ( X I X ) = ( X I Y ) ) | 
						
							| 21 | 18 20 | eleqtrrd |  |-  ( ( ph /\ X = Y ) -> Z e. ( X I X ) ) | 
						
							| 22 | 1 11 3 15 16 17 21 | axtgbtwnid |  |-  ( ( ph /\ X = Y ) -> X = Z ) | 
						
							| 23 | 9 | adantr |  |-  ( ( ph /\ X = Y ) -> A e. P ) | 
						
							| 24 | 13 | adantr |  |-  ( ( ph /\ X = Y ) -> ( X .- Z ) = ( X .- A ) ) | 
						
							| 25 | 1 11 3 15 16 17 16 23 24 22 | tgcgreq |  |-  ( ( ph /\ X = Y ) -> X = A ) | 
						
							| 26 | 22 25 | eqtr3d |  |-  ( ( ph /\ X = Y ) -> Z = A ) | 
						
							| 27 | 4 | adantr |  |-  ( ( ph /\ X =/= Y ) -> G e. TarskiG ) | 
						
							| 28 | 5 | adantr |  |-  ( ( ph /\ X =/= Y ) -> X e. P ) | 
						
							| 29 | 6 | adantr |  |-  ( ( ph /\ X =/= Y ) -> Y e. P ) | 
						
							| 30 | 7 | adantr |  |-  ( ( ph /\ X =/= Y ) -> Z e. P ) | 
						
							| 31 | 9 | adantr |  |-  ( ( ph /\ X =/= Y ) -> A e. P ) | 
						
							| 32 | 10 | adantr |  |-  ( ( ph /\ X =/= Y ) -> B e. P ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ X =/= Y ) -> X =/= Y ) | 
						
							| 34 | 1 2 3 4 5 7 6 12 | btwncolg3 |  |-  ( ph -> ( Y e. ( X L Z ) \/ X = Z ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ X =/= Y ) -> ( Y e. ( X L Z ) \/ X = Z ) ) | 
						
							| 36 | 13 | adantr |  |-  ( ( ph /\ X =/= Y ) -> ( X .- Z ) = ( X .- A ) ) | 
						
							| 37 | 14 | adantr |  |-  ( ( ph /\ X =/= Y ) -> ( Y .- Z ) = ( Y .- A ) ) | 
						
							| 38 | 1 2 3 27 28 29 30 8 31 32 11 33 35 36 37 | lnid |  |-  ( ( ph /\ X =/= Y ) -> Z = A ) | 
						
							| 39 | 26 38 | pm2.61dane |  |-  ( ph -> Z = A ) |