Description: Identity law for points on lines. Theorem 4.18 of Schwabhauser p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tglngval.p | |- P = ( Base ` G ) |
|
| tglngval.l | |- L = ( LineG ` G ) |
||
| tglngval.i | |- I = ( Itv ` G ) |
||
| tglngval.g | |- ( ph -> G e. TarskiG ) |
||
| tglngval.x | |- ( ph -> X e. P ) |
||
| tglngval.y | |- ( ph -> Y e. P ) |
||
| tgcolg.z | |- ( ph -> Z e. P ) |
||
| lnxfr.r | |- .~ = ( cgrG ` G ) |
||
| lnxfr.a | |- ( ph -> A e. P ) |
||
| lnxfr.b | |- ( ph -> B e. P ) |
||
| lnxfr.d | |- .- = ( dist ` G ) |
||
| lnid.1 | |- ( ph -> X =/= Y ) |
||
| lnid.2 | |- ( ph -> ( Y e. ( X L Z ) \/ X = Z ) ) |
||
| lnid.3 | |- ( ph -> ( X .- Z ) = ( X .- A ) ) |
||
| lnid.4 | |- ( ph -> ( Y .- Z ) = ( Y .- A ) ) |
||
| Assertion | lnid | |- ( ph -> Z = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | |- P = ( Base ` G ) |
|
| 2 | tglngval.l | |- L = ( LineG ` G ) |
|
| 3 | tglngval.i | |- I = ( Itv ` G ) |
|
| 4 | tglngval.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tglngval.x | |- ( ph -> X e. P ) |
|
| 6 | tglngval.y | |- ( ph -> Y e. P ) |
|
| 7 | tgcolg.z | |- ( ph -> Z e. P ) |
|
| 8 | lnxfr.r | |- .~ = ( cgrG ` G ) |
|
| 9 | lnxfr.a | |- ( ph -> A e. P ) |
|
| 10 | lnxfr.b | |- ( ph -> B e. P ) |
|
| 11 | lnxfr.d | |- .- = ( dist ` G ) |
|
| 12 | lnid.1 | |- ( ph -> X =/= Y ) |
|
| 13 | lnid.2 | |- ( ph -> ( Y e. ( X L Z ) \/ X = Z ) ) |
|
| 14 | lnid.3 | |- ( ph -> ( X .- Z ) = ( X .- A ) ) |
|
| 15 | lnid.4 | |- ( ph -> ( Y .- Z ) = ( Y .- A ) ) |
|
| 16 | 1 2 3 4 5 6 7 8 7 9 11 12 13 14 15 | lncgr | |- ( ph -> ( Z .- Z ) = ( Z .- A ) ) |
| 17 | 16 | eqcomd | |- ( ph -> ( Z .- A ) = ( Z .- Z ) ) |
| 18 | 1 11 3 4 7 9 7 17 | axtgcgrid | |- ( ph -> Z = A ) |