| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 7 |
|
tgcolg.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 8 |
|
lnxfr.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
| 9 |
|
lnxfr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 10 |
|
lnxfr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 11 |
|
lnxfr.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 12 |
|
lnid.1 |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 13 |
|
lnid.2 |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐿 𝑍 ) ∨ 𝑋 = 𝑍 ) ) |
| 14 |
|
lnid.3 |
⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) = ( 𝑋 − 𝐴 ) ) |
| 15 |
|
lnid.4 |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝐴 ) ) |
| 16 |
1 2 3 4 5 6 7 8 7 9 11 12 13 14 15
|
lncgr |
⊢ ( 𝜑 → ( 𝑍 − 𝑍 ) = ( 𝑍 − 𝐴 ) ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝜑 → ( 𝑍 − 𝐴 ) = ( 𝑍 − 𝑍 ) ) |
| 18 |
1 11 3 4 7 9 7 17
|
axtgcgrid |
⊢ ( 𝜑 → 𝑍 = 𝐴 ) |