| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglngval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tglngval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 3 |  | tglngval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tglngval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tglngval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 6 |  | tglngval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 7 |  | tgcolg.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 8 |  | lnxfr.r | ⊢  ∼   =  ( cgrG ‘ 𝐺 ) | 
						
							| 9 |  | lnxfr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | lnxfr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 11 |  | lnxfr.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 12 |  | tgidinside.1 | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 13 |  | tgidinside.2 | ⊢ ( 𝜑  →  ( 𝑋  −  𝑍 )  =  ( 𝑋  −  𝐴 ) ) | 
						
							| 14 |  | tgidinside.3 | ⊢ ( 𝜑  →  ( 𝑌  −  𝑍 )  =  ( 𝑌  −  𝐴 ) ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝐺  ∈  TarskiG ) | 
						
							| 16 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑋  ∈  𝑃 ) | 
						
							| 17 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑍  ∈  𝑃 ) | 
						
							| 18 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑍  ∈  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑋  =  𝑌 ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  ( 𝑋 𝐼 𝑋 )  =  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 21 | 18 20 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑍  ∈  ( 𝑋 𝐼 𝑋 ) ) | 
						
							| 22 | 1 11 3 15 16 17 21 | axtgbtwnid | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑋  =  𝑍 ) | 
						
							| 23 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝐴  ∈  𝑃 ) | 
						
							| 24 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  ( 𝑋  −  𝑍 )  =  ( 𝑋  −  𝐴 ) ) | 
						
							| 25 | 1 11 3 15 16 17 16 23 24 22 | tgcgreq | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑋  =  𝐴 ) | 
						
							| 26 | 22 25 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  𝑍  =  𝐴 ) | 
						
							| 27 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝐺  ∈  TarskiG ) | 
						
							| 28 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑋  ∈  𝑃 ) | 
						
							| 29 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑌  ∈  𝑃 ) | 
						
							| 30 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑍  ∈  𝑃 ) | 
						
							| 31 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝐴  ∈  𝑃 ) | 
						
							| 32 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝐵  ∈  𝑃 ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑋  ≠  𝑌 ) | 
						
							| 34 | 1 2 3 4 5 7 6 12 | btwncolg3 | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑋 𝐿 𝑍 )  ∨  𝑋  =  𝑍 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌  ∈  ( 𝑋 𝐿 𝑍 )  ∨  𝑋  =  𝑍 ) ) | 
						
							| 36 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋  −  𝑍 )  =  ( 𝑋  −  𝐴 ) ) | 
						
							| 37 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌  −  𝑍 )  =  ( 𝑌  −  𝐴 ) ) | 
						
							| 38 | 1 2 3 27 28 29 30 8 31 32 11 33 35 36 37 | lnid | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  𝑍  =  𝐴 ) | 
						
							| 39 | 26 38 | pm2.61dane | ⊢ ( 𝜑  →  𝑍  =  𝐴 ) |