Description: Congruence rule for lines. Theorem 4.17 of Schwabhauser p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tglngval.p | |- P = ( Base ` G ) |
|
| tglngval.l | |- L = ( LineG ` G ) |
||
| tglngval.i | |- I = ( Itv ` G ) |
||
| tglngval.g | |- ( ph -> G e. TarskiG ) |
||
| tglngval.x | |- ( ph -> X e. P ) |
||
| tglngval.y | |- ( ph -> Y e. P ) |
||
| tgcolg.z | |- ( ph -> Z e. P ) |
||
| lnxfr.r | |- .~ = ( cgrG ` G ) |
||
| lnxfr.a | |- ( ph -> A e. P ) |
||
| lnxfr.b | |- ( ph -> B e. P ) |
||
| lnxfr.d | |- .- = ( dist ` G ) |
||
| lncgr.1 | |- ( ph -> X =/= Y ) |
||
| lncgr.2 | |- ( ph -> ( Y e. ( X L Z ) \/ X = Z ) ) |
||
| lncgr.3 | |- ( ph -> ( X .- A ) = ( X .- B ) ) |
||
| lncgr.4 | |- ( ph -> ( Y .- A ) = ( Y .- B ) ) |
||
| Assertion | lncgr | |- ( ph -> ( Z .- A ) = ( Z .- B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | |- P = ( Base ` G ) |
|
| 2 | tglngval.l | |- L = ( LineG ` G ) |
|
| 3 | tglngval.i | |- I = ( Itv ` G ) |
|
| 4 | tglngval.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tglngval.x | |- ( ph -> X e. P ) |
|
| 6 | tglngval.y | |- ( ph -> Y e. P ) |
|
| 7 | tgcolg.z | |- ( ph -> Z e. P ) |
|
| 8 | lnxfr.r | |- .~ = ( cgrG ` G ) |
|
| 9 | lnxfr.a | |- ( ph -> A e. P ) |
|
| 10 | lnxfr.b | |- ( ph -> B e. P ) |
|
| 11 | lnxfr.d | |- .- = ( dist ` G ) |
|
| 12 | lncgr.1 | |- ( ph -> X =/= Y ) |
|
| 13 | lncgr.2 | |- ( ph -> ( Y e. ( X L Z ) \/ X = Z ) ) |
|
| 14 | lncgr.3 | |- ( ph -> ( X .- A ) = ( X .- B ) ) |
|
| 15 | lncgr.4 | |- ( ph -> ( Y .- A ) = ( Y .- B ) ) |
|
| 16 | 1 11 3 8 4 5 6 7 | cgr3id | |- ( ph -> <" X Y Z "> .~ <" X Y Z "> ) |
| 17 | 1 2 3 4 5 6 7 8 5 6 11 9 7 10 13 16 14 15 12 | tgfscgr | |- ( ph -> ( Z .- A ) = ( Z .- B ) ) |