Metamath Proof Explorer


Theorem miduniq1

Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
miduniq1.a φAP
miduniq1.b φBP
miduniq1.x φXP
miduniq1.e φSAX=SBX
Assertion miduniq1 φA=B

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 miduniq1.a φAP
8 miduniq1.b φBP
9 miduniq1.x φXP
10 miduniq1.e φSAX=SBX
11 eqid SA=SA
12 1 2 3 4 5 6 7 11 9 mircl φSAXP
13 eqidd φSAX=SAX
14 10 eqcomd φSBX=SAX
15 1 2 3 4 5 6 7 8 9 12 13 14 miduniq φA=B