| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mirval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | mirval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | mirval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | mirval.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | mirval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | miduniq1.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 8 |  | miduniq1.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 |  | miduniq1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 10 |  | miduniq1.e | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 )  =  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘ 𝐴 ) | 
						
							| 12 | 1 2 3 4 5 6 7 11 9 | mircl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 )  ∈  𝑃 ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 )  =  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) | 
						
							| 14 | 10 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 )  =  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 12 13 14 | miduniq | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |