Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
miduniq2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
miduniq2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
miduniq2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
10 |
|
miduniq2.e |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) |
11 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
12 |
1 2 3 4 5 6 8 11
|
mirf |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) : 𝑃 ⟶ 𝑃 ) |
13 |
12 7
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ∈ 𝑃 ) |
14 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) |
15 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) |
16 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) |
17 |
12 9
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ∈ 𝑃 ) |
18 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) |
19 |
1 2 3 4 5 6 7 18 9
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ∈ 𝑃 ) |
20 |
12 19
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ∈ 𝑃 ) |
21 |
1 2 3 4 5 6 11 14 15 16 8 7 17 20 10
|
mirauto |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) ) |
22 |
1 2 3 4 5 6 8 11 9
|
mirmir |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = 𝑋 ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 ) ) |
24 |
1 2 3 4 5 6 8 11 19
|
mirmir |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) |
25 |
21 23 24
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) |
26 |
1 2 3 4 5 6 13 7 9 25
|
miduniq1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) = 𝐴 ) |
27 |
1 2 3 4 5 6 8 11 7
|
mirinv |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
28 |
26 27
|
mpbid |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
29 |
28
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |