| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mirval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | mirval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | mirval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | mirval.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | mirval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | miduniq2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 8 |  | miduniq2.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 |  | miduniq2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 10 |  | miduniq2.e | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑆 ‘ 𝐵 )  =  ( 𝑆 ‘ 𝐵 ) | 
						
							| 12 | 1 2 3 4 5 6 8 11 | mirf | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐵 ) : 𝑃 ⟶ 𝑃 ) | 
						
							| 13 | 12 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 14 |  | eqid | ⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 )  =  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) | 
						
							| 15 |  | eqid | ⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) | 
						
							| 16 |  | eqid | ⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) )  =  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) | 
						
							| 17 | 12 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 )  ∈  𝑃 ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘ 𝐴 ) | 
						
							| 19 | 1 2 3 4 5 6 7 18 9 | mircl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 )  ∈  𝑃 ) | 
						
							| 20 | 12 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) )  ∈  𝑃 ) | 
						
							| 21 | 1 2 3 4 5 6 11 14 15 16 8 7 17 20 10 | mirauto | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) )  =  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) ) | 
						
							| 22 | 1 2 3 4 5 6 8 11 9 | mirmir | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) )  =  ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 ) ) | 
						
							| 24 | 1 2 3 4 5 6 8 11 19 | mirmir | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) )  =  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) | 
						
							| 25 | 21 23 24 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 )  =  ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) | 
						
							| 26 | 1 2 3 4 5 6 13 7 9 25 | miduniq1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 27 | 1 2 3 4 5 6 8 11 7 | mirinv | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 )  =  𝐴  ↔  𝐵  =  𝐴 ) ) | 
						
							| 28 | 26 27 | mpbid | ⊢ ( 𝜑  →  𝐵  =  𝐴 ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |