Metamath Proof Explorer


Theorem miduniq2

Description: If two point inversions commute, they are identical. Theorem 7.19 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
miduniq2.a ( 𝜑𝐴𝑃 )
miduniq2.b ( 𝜑𝐵𝑃 )
miduniq2.x ( 𝜑𝑋𝑃 )
miduniq2.e ( 𝜑 → ( ( 𝑆𝐴 ) ‘ ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) = ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐴 ) ‘ 𝑋 ) ) )
Assertion miduniq2 ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 miduniq2.a ( 𝜑𝐴𝑃 )
8 miduniq2.b ( 𝜑𝐵𝑃 )
9 miduniq2.x ( 𝜑𝑋𝑃 )
10 miduniq2.e ( 𝜑 → ( ( 𝑆𝐴 ) ‘ ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) = ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐴 ) ‘ 𝑋 ) ) )
11 eqid ( 𝑆𝐵 ) = ( 𝑆𝐵 )
12 1 2 3 4 5 6 8 11 mirf ( 𝜑 → ( 𝑆𝐵 ) : 𝑃𝑃 )
13 12 7 ffvelrnd ( 𝜑 → ( ( 𝑆𝐵 ) ‘ 𝐴 ) ∈ 𝑃 )
14 eqid ( ( 𝑆𝐵 ) ‘ 𝐴 ) = ( ( 𝑆𝐵 ) ‘ 𝐴 )
15 eqid ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) = ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ 𝑋 ) )
16 eqid ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐴 ) ‘ 𝑋 ) ) ) = ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐴 ) ‘ 𝑋 ) ) )
17 12 9 ffvelrnd ( 𝜑 → ( ( 𝑆𝐵 ) ‘ 𝑋 ) ∈ 𝑃 )
18 eqid ( 𝑆𝐴 ) = ( 𝑆𝐴 )
19 1 2 3 4 5 6 7 18 9 mircl ( 𝜑 → ( ( 𝑆𝐴 ) ‘ 𝑋 ) ∈ 𝑃 )
20 12 19 ffvelrnd ( 𝜑 → ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐴 ) ‘ 𝑋 ) ) ∈ 𝑃 )
21 1 2 3 4 5 6 11 14 15 16 8 7 17 20 10 mirauto ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) ) = ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐴 ) ‘ 𝑋 ) ) ) )
22 1 2 3 4 5 6 8 11 9 mirmir ( 𝜑 → ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) = 𝑋 )
23 22 fveq2d ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ ( ( 𝑆𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 ) )
24 1 2 3 4 5 6 8 11 19 mirmir ( 𝜑 → ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐵 ) ‘ ( ( 𝑆𝐴 ) ‘ 𝑋 ) ) ) = ( ( 𝑆𝐴 ) ‘ 𝑋 ) )
25 21 23 24 3eqtr3d ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 ) = ( ( 𝑆𝐴 ) ‘ 𝑋 ) )
26 1 2 3 4 5 6 13 7 9 25 miduniq1 ( 𝜑 → ( ( 𝑆𝐵 ) ‘ 𝐴 ) = 𝐴 )
27 1 2 3 4 5 6 8 11 7 mirinv ( 𝜑 → ( ( ( 𝑆𝐵 ) ‘ 𝐴 ) = 𝐴𝐵 = 𝐴 ) )
28 26 27 mpbid ( 𝜑𝐵 = 𝐴 )
29 28 eqcomd ( 𝜑𝐴 = 𝐵 )