| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
colmid.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝑋 ) |
| 8 |
|
colmid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 9 |
|
colmid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 10 |
|
colmid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 11 |
|
colmid.c |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 12 |
|
colmid.d |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) = ( 𝑋 − 𝐵 ) ) |
| 13 |
|
animorr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 14 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 15 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑋 ∈ 𝑃 ) |
| 16 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 17 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 18 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝑋 − 𝐴 ) = ( 𝑋 − 𝐵 ) ) |
| 19 |
18
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝑋 − 𝐵 ) = ( 𝑋 − 𝐴 ) ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 21 |
1 2 3 14 16 15 17 20
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑋 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 22 |
1 2 3 4 5 14 15 7 16 17 19 21
|
ismir |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 23 |
22
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 24 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝑋 ∈ 𝑃 ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) |
| 29 |
1 2 3 24 27 26 25 28
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝑋 ) ) |
| 30 |
1 2 3 24 26 27
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐴 𝐼 𝑋 ) ) |
| 31 |
1 2 3 6 10 8 10 9 12
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐴 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
| 33 |
32
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐵 − 𝑋 ) = ( 𝐴 − 𝑋 ) ) |
| 34 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐴 − 𝑋 ) = ( 𝐴 − 𝑋 ) ) |
| 35 |
1 2 3 24 25 26 27 26 26 27 29 30 33 34
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐴 − 𝐴 ) ) |
| 36 |
1 2 3 24 25 26 26 35
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐵 = 𝐴 ) |
| 37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 = 𝐵 ) |
| 38 |
37
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → 𝐴 = 𝐵 ) |
| 39 |
38
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 40 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐺 ∈ TarskiG ) |
| 41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐴 ∈ 𝑃 ) |
| 42 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐵 ∈ 𝑃 ) |
| 43 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝑋 ∈ 𝑃 ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) |
| 45 |
1 2 3 40 42 43
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐵 ∈ ( 𝐵 𝐼 𝑋 ) ) |
| 46 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐴 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
| 47 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐵 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
| 48 |
1 2 3 40 41 42 43 42 42 43 44 45 46 47
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
| 49 |
1 2 3 40 41 42 42 48
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐴 = 𝐵 ) |
| 50 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → 𝐴 = 𝐵 ) |
| 51 |
50
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 52 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
| 53 |
11
|
orcomd |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∨ 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) ) |
| 54 |
53
|
orcanai |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 55 |
52 54
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 56 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 57 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 58 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
| 60 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝑋 ∈ 𝑃 ) |
| 61 |
1 4 3 56 57 58 59 60
|
tgellng |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) ) ) |
| 62 |
55 61
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑋 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝑋 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝑋 ) ) ) |
| 63 |
23 39 51 62
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 64 |
13 63
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |