| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwncgr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgbtwncgr.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tgbtwncgr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tgbtwncgr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgbtwncgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgbtwncgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgbtwncgr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgbtwncgr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgcgrsub.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 10 |
|
tgcgrsub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 11 |
|
tgcgrsub.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 12 |
|
tgcgrsub.2 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
| 13 |
|
tgcgrsub.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 14 |
|
tgcgrsub.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 15 |
1 2 3 4 5 8
|
tgcgrtriv |
⊢ ( 𝜑 → ( 𝐴 − 𝐴 ) = ( 𝐷 − 𝐷 ) ) |
| 16 |
1 2 3 4 5 7 8 10 13
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
| 17 |
1 2 3 4 5 6 7 5 8 9 10 8 11 12 13 14 15 16
|
tgifscgr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 18 |
1 2 3 4 6 5 9 8 17
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |